Loyola University Chicago

- Navigation -

Loyola University Chicago

University Core

Core Knowledge Area: Quantitative Analysis

Learning Outcome: Demonstrate understanding of quantitative analysis.

Quantitative analysis enables one to understand and analyze quantitative information presented in various formats. It involves reasoning by symbolic, numerical, or geometrical means; determining various ways to solve problems; and predicting possible consequences.

Competencies: By way of example, Loyola graduates should be able to:

Core Quantitative Analysis Courses (1 course required)

CJC 206: Statistics (Formerly CRMJ 206)
This course provides an introduction and overview of statistical analysis methods and techniques used in the study of delinquency, crime and the operation/management of the criminal justice system.

Outcome:  Students will be able to effectively perform and interpret statistical analyses and identify the appropriate use of these statistics in the analysis of crime and criminal justice system performance.
COMP 125: Visual Information Processing
This course provides an introduction to computer programming using a language well-suited to beginning programmers and practical applications, for example Visual Basic .Net.

Outcome: Students will be able to represent and interpret quantitative information symbolically, graphically, numerically, verbally, and in written form.
COMP 150: Introduction to Computing
This course will introduce both majors and non-majors to the range of studies, experimentation, and practice embodied in computer science.

Outcome: Students will understand the field and foundations of computer science, and be able to demonstrate basic tools of the field.
COMP 163: Discrete Structures
This course will cover topics in discrete mathematics relevant to computer science, with particular emphasis on foundational knowledge needed for design and analysis of algorithms.

Outcome: Students will understand the field and foundations of computer science, and be able to demonstrate basic tools of the field.
ISOM 241: Business Statistics
This course examines the steps and procedures required to solve problems in science, social science, and business where data are useful-from definition of the managerial problem to the use of statistical analysis to address the problem.

Outcome: Students will be able to demonstrate understanding of statistical thinking and data analysis techniques for decision-making purposes.
MATH 108: Real World Modeling with Mathematics
This course covers material selected from the mathematics of the management sciences, statistics, the digital revolution, social choice, and consumer finance models.

Outcome: Students will be able to demonstrate understanding particular topics, including: networks, planning and scheduling, linear programmming, generating and analyzing statistical data, probability, statistical inference, identification numbers, data encryption, voting procedures, weighted voting systems, fair division, apportionment, models for saving and for borrowing.
STAT 103: Fundamentals of Statistics
This course is an introduction to the fundamentals of descriptive and inferential statistics.

Outcome: Students will be able to demonstrate understanding of particular topics, including: design of experiments, observational studies, histograms, the average and standard deviation, normal approximations, chance error and bias, basic probability, chance processes, expected value and standard error, probability histograms, surveys, accuracy of percentages and averages, tests of significance, and correlation and regression.

Loyola

University Core Curriculum Committee · 1032 W. Sheridan Road · Chicago, IL 60660

Notice of Non-discriminatory Policy