PHYS 111 K
FIRST HOUR EXAM

Solutions

1. In this question, we are asked to consider two vectors :
A=4X+6Y
B=-%X-2y
The algebraic sum is simply :
C=A+B=(4X+6Y)+(-X-29)
Grouping according to unit vector :
C=(4%-%)+(6Y-2Y) = 3% + 4y

The magnitude of the resultant vector is given by the Pythagorean theorem :

|C|=\/32+42 =5

and the angle the vector C makes with the x axis is :

4 N
tanf = — = 6 = tan” (—)
3 3

The graphical solution makes use of the "tail to tip™ procedure, and should look like :

C=A+B

In this graph, vectors A, B and C are indicated; the dashed line represents vector B moved (without
changing its length or orientation in space) such that its tail starts from the tip of vector A.

2. This was a problem designed to test your ability to apply the concept of vectors to a scenario.
The question asked for the average velocity of the runner. Since velocity is a vector, the average
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velocity is the net displacement divided by the time of the trip. Had the runner returned to the
starting line (as in the example done in class in the first week), the average velocity would have
been zero since there would be no net displacement. In this case, as the figure below shows, the
runner started at O and finished at X; the net displacement is 100 m; so the average velocity is 100
m/7 hrs in the positive x direction.

OX

(This diagram is not to scale to allow the point X to be distinguishable from O).

3. The angle is the same no matter how large we make the radius of the wheel. The angle of the
displacement vector is given by :
tang = (X)
X

where y is the vertical displacement of the point and x is the horizontal displacement of the point.
The vertical displacement will always be the diameter of the wheel or 2 R (where R is the radius of
the wheel); and the horizontal displacement will be the distance a point on the wheel travels in half a
revolution, which is half the circumference of the wheel or 7 R. Thus, no matter the size of the
wheel, the angle of the displacement vector with respect to the ground satisfies :

= (25)-

which is independent of the wheel radius.

4. This is a problem in one dimensional motion with uniform acceleration; for this problem, we set
the value of acceleration = - 10 m s™2. We are asked to find the time of flight, maximum height
achieved, and show a graph of v vs. t.

We can find the time of flight in a few ways. First, we can use the equation of motion:
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1
y(t) = yo + Vot +§at2

In this case, the initial y value (the ground) is zero and the initial velocity is + 40 m/s. Once we
define the direction of initial velocity as positive, we must define gravity as negative, so for this
scenario, our equation of motion becomes :

1 2
y(® = Vot - ~gt

To find the time of flight, we want to know when the rocket will be on the ground (y = 0), so we set
y (t) =0and find :

1
0 = 40t - 5-10t2 = t(40m/s -5m/s’t) = 0 = t = 0, 8s

The time of flight is 8 s. We could have also used the fact that the vertical velocity is zero at the
maximum time, and found how long it takes the rocket to reach zero velocity :

For this problem, the initial velocity is the launch velocity, and since our analysis ends at the highest
point, our final velocity is zero; substituting appropriate numbers gives :

Om/s —40m/s
- ~10m /s?

=4s

If 4 s is the time to apex; then 8 s is the total time of flight. We can find the maximum height from
the equation of motion, determining the value of y whent=4s:

1 1
y(4s) = 0 +40t — Egt2 = 4Om/s(4s)—5-10m/52(4s)2:

160m-80m=80m
Finally, to plot vertical velocity as a function of time, we begin with the expression :
V() = vp + at
Using the numerical values for this case we have :
V() = 40m/s — 10m /s*t

The graph of vertical velocity as a function of time is then :
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velocity (m/s)
40

20

I . . . L time ()
8

—402
Remember that velocity is a vector; the velocity at lauch is 40 m/s; the velocity at apex is 0, and the
velocity at impact is - 40 m/s.The velocity must be negative since the rocket is descending and we
have previously set up as the positive direction.

5. You are asked to use the basic definitions of kinematics to derive two important equations. For
purposes of simplicity, let' s set the initial time = 0, therefore we can simply write At =t. We have :

AX
Vav = Torxf_xo = Vavt (1)
We also know in the case of uniform acceleration :
Vav = E (Vi + Vo) t
Substitute this expression for average velocity into eq. (1) and get :
1
Xf—Xo = E(Vf+Vo)t (2)
Our definition of acceleration is :
Av Vi — Vo

= = Vf =Vp+at
t t

Substitute this expression for final velocity into eq. (2) :

a

1 1
Xi—Xg = — (Vo+ at + Vo)t = —(2vp+at)t = vot + —at?
2 2 2
or:
1 o
X = Xo +v0t+5at

For the second part of this problem, we are asked to eliminate time from the equation of motion to
derive :
VZ = V3 +2aAX

We start from the definition of acceleration :
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Substitute this expression for t into the equation of motion :
(Vi—Vg) 1 (vf—Vp)
Xf=Xo+ Vo ———+—a————
a 2 a2
Expanding the squared term and multiplying out the first term on the right :

Vovg —V3 1

X = Xo + ——— + — (Vf =2 Vs Vo + V)
a 2a
2 2
“ _x Vs Vo
f—Xo= — - —
2a 2a

> 2a(Xf—Xg) = V2—V5 = vZ = v + 2aAx QED

6. Starting from the equations of motion, we are asked to derive expressions for time of flight and
range. We start with the given equations of motion :

1 2

1 2
X() = Xo +Voxt +Eaxt

We adopt a coordinate system in which the launch point is at the origin, so both the x and y initial
coordinates are zero; defining up as positive, the acceleration in the y direction becomes - g . There
IS no acceleration in the x direction since we are ignoring friction and no other forces act horizon-
tally. The initial velocity components become :

Vox = Vo CO0SH; Voy = Vgsing
With these values, our equations of motion simplify to :
X (t) = vpcosOt

) 1
y(t) = vpsindt — Egt2

We solve for the time of flight by realizing that the motion ends when the projectile hits the ground.
In other words, we want to find the time when y (t) = 0. Setting the y equation to zero, we get :

_ 1 1
0:vosm9t—§gt t(vosme—ggt)

For this equation to hold, we know thatt =0 or
2Vosiné
g
The latter is the time of flight; t = 0 corresponds to the time of launch.

The range is the horizontal distance traveled by the projectile. We determine this by substituting the
time of flight into the x equation of motion :
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2vasinfcosf  V3sin(26)

2Vgsing
Range = vpcosd
g g

g
In the last step, we make use of the double angle formula :
sin(260) = 2sin0dcos O



