
PHYS 111 K
HOMEWORK #11-- SOLUTIONS

1.  Note first that the motion of the crate is to the right in the diagram.  For each force, we will use 

W = F·r = F r cos θ where θ is the angle between the force and direction of motion.  Applying this 

we have :

W1 = T1 r cos 20 = 600 N · 3 m cos 20 = 1691 J

W2 = T2 r cos 30 = 410 N · 3 m cos 30 = 1065 J

W3 = T3 r cos 180 = - 660 N · 3 m = - 1980 J

2.  Since the distance we are moving is a considerable fraction of the radius of the Earth, the gravita-

tional force exerted on the mass will vary during the trip, and we cannot set g equal to a constant.  

Thus, we cannot use W = m g h for this problem.  We use instead the integral form of work :
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3.  For this problem, we need to remember that force and potential are related by :

F = -
d U

d x

Since the graph provided consists of a series of straight line segments, we can find the value of 

dU/dx by computing the slope of each straight line.  The slope of the line at x = 5cm is -10J/10cm 

=-10J/0.1m 

or the force has x component of +100N.  

When the particle is at x = 15 cm, dU/dx =0 so the force is zero. At x= 35 cm, +10J/0.2m = 50N, so 

the x component of the force at x = 35 cm is - 50N.

4. We take the derivative of the potential :

Fy = -
d Uy

d y
= - 12 y2 J /m

The force at each distance is:



F (0 m) = -12 (0)2 N = 0 N

F (1 m) = - 12 N

F (2 m) = - 48 N

5. Let' s start with the frictionless case.  Before motion ensues, the system has no kinetic energy and 

the falling block has potential energy of m g h.  Assuming the mass on the table remains on the 

table, it experiences no change in potential energy, so we do not need to  know its value of initial 

potential energy since we know it will equal the final value of potential energy.  Energy conserva-

tion in the frictionless case yields :

m g h =
1

2
(m+M) v2

where v is the speed of the system at the instant the block hits.  Note that both blocks will be mov-

ing at the speed v, so both have kinetic energy.  Simple algebra yields:

v = 2 m g h / (M+m)

In the case with friction, the initial potential energy must equal both the final kinetic energy and the 

work lost to friction.  The work done against friction will be equal to:

Wf = - μk M g h

So, this amount of work reduces the amount of initial potential that can transform into kinetic and 

we have :

m g h - μk M g h =
1

2
(M+m) v2

or :

v = 2 g h (m- μk M) / (m+M)

6. a) The graph below is produced using the data for m and r given in part c) :
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The important points here are that the potential at infinity is zero (see part b), and as the objects near 

each other, their potential becomes more negative.  This gives rise to the concept of a  “potential 

well” ; think of an object falling deeper into a gravitational field as it moves deeper into the poten-
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tial well (so that it requires more energy to lift it out of the well).

c)  Since the objects start at rest, the initial kinetic energy is zero, and the change in potential must 

equal the sum of final kinetic energies.  Conservation of energy gives us :

Ki +Ui = Kf +Uf

since the initial kinetic energy is zero, this becomes equivalent to:

Kf = Ui -Uf or :
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Notice that we cannot assume the two stars will have the same speed at the end.  We know all the 

values on the right of the equation above, but need a second equation to solve for the individual 

speeds.  We find this by using the conservation of momentum.  If we choose our system to be the 

two stars, the gravitational force between them is inside the system, and there are thus no external 

forces acting on the system.  Thus, conservation of momentum yields:

0 = m1 v1 +m2 v2 or v2 =
- m1

m2
v1

Substitute this into the equation above:
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We can solve for v1:

v1 = -2 G m2
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Where ri is the initial distance between the centers of the stars, r f  is the final distance between their 

centers (the sum of the stellar radii), m1and m2 are the masses of the stars, and G is the Newtonian 

gravitational constant.  Substituting those values I get v1=689 km/s and v2 = 172km/s   

7.  We have essentially done this problem in #6.  A rocket at the surface of the Earth experiences 

potential energy of magnitude G m M/R  where G is the Newtonian Gravitational constant, m is the 

mass of the rocket, M is the mass of the Earth, and R is the radius of the Earth.  If the rocket' s 

kinetic energy just exceeds this, the rocket can escape the Earth' s gravitational field.  This condition 

is :

1

2
m v2 =

G m M

R
⇒ v = 2

G M

R
= 2 · 6.67 × 10-11 N m2 kg-2 · 6 1024 kg / 6.4 108 m

= 11.1 km / s

In practice, it is not feasible to launch a rocket with escape velocity from the surface of the Earth.  A 

rocket traveling through the atmosphere at this speed would experience so much drag that it would 

likely burn.  Spacecraft are launched into low Earth orbit, and from there accelerated to escape 
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velocity.

4     phys111-2015hw11s.nb


