PHYS 111

HOMEWORK \#3-- Solutions

1. For each of these functions, we wish to compute :

$$
\text { slope }=\frac{\Delta \mathrm{f}}{\Delta \mathrm{x}}=\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)}{\Delta \mathrm{x}}
$$

for different values of $\Delta \mathrm{x}$. For ease of computation, I will use 2.0 in each case for the value of x_{1}. a) for $f(x)=x^{2}$:

$$
\begin{gathered}
\text { slope }=\frac{(2.1)^{2}-(2.0)^{2}}{0.1}=\frac{4.41-4.00}{0.1}=4.1 \\
\text { slope }=\frac{(2.01)^{2}-(2.00)^{2}}{0.01}=\frac{4.04-4.00}{0.1}=4.01 \\
\text { slope }=\frac{(2.001)^{2}-(2.000)^{2}}{0.001}=\frac{4.004-4.000}{0.001}=4.001
\end{gathered}
$$

Clearly, as Δx get smaller, we expect the slope to tend toward 4 , which is the expected value of the derivative of x^{2} evaluated at 2 , since :
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{2}=2 \mathrm{x}$
b) for $f(x)=x^{3}$:

$$
\begin{gathered}
\text { slope }=\frac{2.1^{3}-2.0^{3}}{0.1}=\frac{9.26-8.00}{0.1}=12.61 \\
\text { slope }=\frac{2.01^{3}-2^{3}}{0.01}=\frac{8.121-8.00}{0.01}=12.1 \\
\text { slope }=\frac{2.001^{3}-2.00^{3}}{0.001}=\frac{8.012-8}{0.001}=12.001
\end{gathered}
$$

The slope is trending toward 12 as $\Delta \mathrm{x}$ becomes smaller; the derivative of x^{3} is :
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{3}=3 \mathrm{x}^{2}$
which equals 12 when $\mathrm{x}=2$.
c) for $f(x)=x^{4}$:

Following a similar procedure :

$$
\text { slope }=\frac{2.1^{4}-2.0^{4}}{0.1}=\frac{19.448-16.000}{0.1}=34.48
$$

$$
\begin{gathered}
\text { slope }=\frac{2.01^{4}-2.00^{4}}{0.01}=\frac{16.322-16.000}{0.01}=32.24 \\
\text { slope }=\frac{2.001^{4}-2.000^{4}}{0.001}=\frac{16.0320-16.0000}{0.001}=32.024
\end{gathered}
$$

The slope tends toward a values of 32 as Δx becomes smaller; this is expected since:

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{4}=4 \mathrm{x}^{3}
$$

which equals 32 when $\mathrm{x}=2$.
2. The problem I wanted you to do was \#77 on p. 68 (I transposed the question and page numbers). We are asked to find the constant acceleration of the rocket given information on the time when the bolt falls off ($\mathrm{t}=4 \mathrm{~s}$) and how long it takes the bolt to hit the ground (another 6 s). We are interested in writing the equation of motion of the bolt :

$$
\mathrm{y}_{\text {bolt }}(\mathrm{t})=\mathrm{y}_{\mathrm{o}}+\mathrm{v}_{\mathrm{o}} \mathrm{t}-\frac{1}{2} \mathrm{~g} \mathrm{t}^{2}
$$

While this is the standard equation of motion, we need to be careful how we define these parameters, in other words, what values will we use for y_{o}, v_{o}, and t? Let's say the equation of motion above starts at the moment when the bolt falls off; this means we have to figure out how high the rocket has travelled in the first 4 s of motion, and the speed the rocket has acquired at that time.

To do this, we consider the first phase of motion, the first $4 s$ when the bolt is still on the rocket. In this time, the rocket will rise a distance:

$$
\mathrm{y}_{\text {rocket }}(\mathrm{t})=\mathrm{y}_{\mathrm{o}}+\mathrm{v}_{\mathrm{o}} \mathrm{t}+\frac{1}{2} a \mathrm{t}^{2}
$$

In this phase, the initial starting position is on the ground (so $y_{o}=0$, and the rocket starts from rest, so $v_{o}=0$); thus, in the first 4 s of motion, the rocket will reach a height of $1 / 2$ a $(4 s)^{2}$ or 8 a meters; this will be the value of y_{o} in the $y_{\text {bolt }}$ equation of motion.

Now, what's the velocity of the rocket at $t=4 s$? Since the initial velocity was zero for this phase, the velocity at the end of 4 s is simply $4 \mathrm{a} \mathrm{m} / \mathrm{s}$, and this will be the value of v_{0} to use in the $y_{\text {bolt }}$ equation. Substituting these values, we get:

$$
y_{\text {bolt }}(\mathrm{t})=8 \mathrm{a}+4 \mathrm{at}-\frac{1}{2} \mathrm{gt}^{2}
$$

(once the bolt leaves the rocket, the only force it experiences is gravity, so its acceleration is -g). Now, we know that the bolt hits the ground 6 s after it leaves the rocket. We set $y_{\text {bolt }}(\mathrm{t})=0$ and set $\mathrm{t}=6 \mathrm{~s}$ to obtain:

$$
0=8 a+4 a(6 s)-\frac{1}{2} g(6 s)^{2}
$$

This is now a single variable equation in a; we solve for a :

$$
8 \mathrm{a}+24 \mathrm{a}=18 \mathrm{~g} \Rightarrow 32 \mathrm{a}=18 \mathrm{~g} \Rightarrow \mathrm{a}=9 \mathrm{~g} / 16 \text { or } 5.5 \mathrm{~m} / \mathrm{s}^{2}
$$

3. We are given the model equation :

$$
\mathrm{v}=\mathrm{a}\left(1-\mathrm{e}^{-\mathrm{bt}}\right)
$$

where v is speed in $m / s, t$ is time in s, and a and b are constants determined to be :

$$
\mathrm{a}=11.81 \mathrm{~m} / \mathrm{s} \quad \mathrm{~b}=0.6887 \mathrm{~s}^{-1}
$$

(make sure you do the proper dimensional analysis to convince yourself these are the appropriate units for these constants.)

We are asked to find the acceleration at three different times; if you know how to differentiate exponential functions, you get :

$$
\text { accel }=\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{abe} \mathrm{e}^{-\mathrm{bt}}
$$

Evaluated at $\mathrm{t}=1 \mathrm{~s}$ yields :

$$
\text { accel }=(11.81 \mathrm{~m} / \mathrm{s}) *(0.6887 / \mathrm{s}) \mathrm{e}^{-0.6887 / \mathrm{s} * 1 \mathrm{~s}}=4.08 \mathrm{~m} / \mathrm{s}^{2}
$$

We evaluate at $t=3 \mathrm{~s}$ and 5 s by substituting these values of t into the accel equation above, and obtain :
accel $=1.03 \mathrm{~m} / \mathrm{s}^{2}$ at $\mathrm{t}=3 \mathrm{~s}$ and accel $=0.26 \mathrm{~m} / \mathrm{s}^{2}$ at $\mathrm{t}=5 \mathrm{~s}$,
showing that the runner is approaching a constant speed as the race evolves.
(Note : sort of a bad choice for the author to give the constants as "a" and "b" when we are solving an equation for "a...ccel")

If you don' t know how to differentiate these types of functions, we can determine the acceleration by taking the slope of the tangent line in the speed vs. time graph, or by computing :

$$
\text { acceleration }=\text { slope }=\frac{\mathrm{v}(\mathrm{t}+\Delta \mathrm{t})-\mathrm{v}(\mathrm{t})}{\Delta \mathrm{t}}
$$

Since the race is only about 10 s in length, let' s choose a value of $\Delta t=0.01 \mathrm{~s}$; we' ll see how these results compare to the values determined via calculus methods above (and that will help determine whether our choice for Δt was small enough). For $t=1 \mathrm{~s}$ we have :

$$
\text { acceleration }=\frac{\mathrm{a}\left(1-\mathrm{e}^{-\mathrm{b}(1.01 \mathrm{~s})}\right)-\mathrm{a}\left(1-\mathrm{e}^{-\mathrm{b}(1.0 \mathrm{~s})}\right)}{0.01 \mathrm{~s}}=\frac{\mathrm{a}\left(\mathrm{e}^{-\mathrm{b}(1.0 \mathrm{~s})}-\mathrm{e}^{-\mathrm{b}(1.01 \mathrm{~s})}\right)}{0.01 \mathrm{~s}}=4.07 \mathrm{~m} / \mathrm{s}^{2}
$$

For $\mathrm{t}=3 \mathrm{~s}$:

$$
\text { acceleration }=\frac{\mathrm{a}\left(\mathrm{e}^{-(3.0 \mathrm{~s}) \mathrm{b}}-\mathrm{e}^{-(3.01 \mathrm{~s}) \mathrm{b}}\right)}{0.01 \mathrm{~s}}=1.03 \mathrm{~m} / \mathrm{s}^{2}
$$

For $\mathrm{t}=5 \mathrm{~s}$:

$$
\text { acceleration }=\frac{\mathrm{a}\left(\mathrm{e}^{-(5.0 \mathrm{~s}) \mathrm{b}}-\mathrm{e}^{-(5.01 \mathrm{~s}) \mathrm{b}}\right)}{0.01 \mathrm{~s}}=0.26 \mathrm{~m} / \mathrm{s}^{2}
$$

We have good agreement between the two approaches suggesting that using even smaller values of Δt will yield even better agreement.
4. We will be working with the equation :

$$
\mathrm{v}^{2}=\frac{2 \mathrm{P}}{\mathrm{~m}} \mathrm{t}
$$

where v is the speed (measured in m / s), P is the power (measured in the MKS unit of watts), m is the mass (measured in kg) and t is the time (measured in s). We are told that for this case, P has a
value of $3.6 \cdot 10^{4} \mathrm{~W}$ and $\mathrm{m}=1200 \mathrm{~kg}$. We are asked:
a) Compute v when $t=10 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$:

We simply substitute these values of t into the equation above :

$$
\mathrm{v}=\sqrt{2 \cdot 3.6 \times 10^{4} \mathrm{~W} \cdot 10 \mathrm{~s} / 1200 \mathrm{~kg}}=\sqrt{600 \mathrm{~m}^{2} / \mathrm{s}^{2}}=24.5 \mathrm{~m} / \mathrm{s}
$$

For part b), you could substitute $t=20 \mathrm{~s}$, or just note that our answer to this part must be $\sqrt{2}$ larger or a speed of $34.6 \mathrm{~m} / \mathrm{s}$.
b) and c) We write the speed as :

$$
\mathrm{v}=(2 \mathrm{P} / \mathrm{m})^{1 / 2} \mathrm{t}^{1 / 2}
$$

The acceleration is just the time derivative of v ; and this expression of v is written in the familiar format of $\mathrm{v}=\mathrm{c} t^{n}$ where in this case the constant is $\sqrt{2 P / m}$ and $\mathrm{n}=1 / 2$. Therefore, the acceleration of this particle is:

$$
\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{1}{2}(2 \mathrm{P} / \mathrm{m})^{1 / 2} \mathrm{t}^{-1 / 2}=\frac{\sqrt{2 \mathrm{P} / \mathrm{mt}}}{2}=\sqrt{\mathrm{P} / 2 \mathrm{mt}}
$$

Evaluating this expression at $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=10 \mathrm{~s}$ yields :

$$
\mathrm{a}=\sqrt{3.6 \cdot 10^{4} \mathrm{~W} /(2 \cdot 1200 \mathrm{~kg} \cdot 1 \mathrm{~s})}=3.88 \mathrm{~m} / \mathrm{s}^{2}
$$

The acceleration at $\mathrm{t}=10 \mathrm{~s}$ will be $\sqrt{10}$ smaller than at $\mathrm{t}=1 \mathrm{~s}$, or $\mathrm{a}(\mathrm{t}=10 \mathrm{~s})=1.22 \mathrm{~m} / \mathrm{s}^{2}$
d) The key here is that the acceleration term has time in the denominator; this means that as $t \rightarrow 0$ (right after motion begins), this models predicts almost infinitely large, a result which is not physically meaningful. Below is a graph of the acceleration vs. time according to this model :

According to this model, a passenger in the vehicle would feel a tremendous change of acceleration in the first few tenths of a second of motion; this is not likely realistic, suggesting that the model is not valid for the first few tenths of a second of motion. Some of you know that the time rate of
change of acceleration is called jerk, and is defined as
$j=d a / d t$.
5. We can write the person' s motion in vector notation as :
$\mathbf{R}=3.1 \hat{\mathbf{y}}-2.4 \hat{\mathbf{x}}-5.2 \hat{\mathbf{y}}$
where we use a standard Cartesian coordinate system in which we denote east and north as postiive, west and south as negative and R is the resultant vector. Summing components we obtain simply : $\mathbf{R}=-2.4 \hat{\mathbf{x}}-2.1 \hat{\mathbf{y}}$
The magnitude of the resultant is given by the Pythagorean theorem::

$$
|\mathbf{R}|=\sqrt{(-2.4 \mathrm{~km})^{2}+(-2.1 \mathrm{~km})^{2}}=3.2 \mathrm{~km}
$$

The ending point lies in the third quadrant we can describe the direction of the resultant vector using:
$\tan \theta=\frac{\left|\mathrm{r}_{\mathrm{y}}\right|}{\left|\mathrm{r}_{\mathrm{x}}\right|}=\frac{2.1 \mathrm{~km}}{2.4 \mathrm{~km}} \Rightarrow \theta=41^{\circ}$ south of west
6. The point P moves both in the x and y directions. Its y displacement is simply the diameter of the wheel, 90 cm . It x displacement is the total distance a point on the wheel will travel in one - half revolution, or a distance equal to $\pi \mathrm{R}$ (where R is the radius of the wheel). (Remember that the circumference of a circle is $2 \pi \mathrm{R}$, so this is the distance traveled by a point on the wheel in one full revolution; thus $\pi \mathrm{R}$ is the distance traveled in half a revolution.)
Thus, the magnitude of the displacement vector is :

$$
|\mathbf{R}|=\sqrt{(45 \pi \mathrm{~cm})^{2}+(90 \mathrm{~cm})^{2}}=168 \mathrm{~cm}
$$

The angle made by the displacement vector with respect to the ground is:

$$
\tan \theta=\frac{90 \mathrm{~cm}}{45 \pi \mathrm{~cm}}=0.64 \Rightarrow \theta=32.5^{\circ}
$$

