
PHYS 111 K

HOMEWORK #7
Solutions

1.  Block A has a mass M and rests on an incline of angle q.  Block B has a mass of m and rests on
an incline of angle f.  We will consider forces acting either along the plane or perpendicular to the
plane, and will call up the plane as the positive direction in each case.

a) If the planes are frictionless, the only forces acting along the plane are the tension in the rope and
the component of gravity acting down the plane.  Since the rope is massless, the tension is the same
everywhere in the rope.  Since the two blocks move as a system, they must have the same magni-
tude of acceleration.  Writing Newton' s second law for each block :

SFA = T - M g sin q = - M a the sign is negative since A slides down the surface
SFB = T - m g sin f = m a

Subtratcing the B equation from the A equation gives :

- M g sin q + m g sin f = - M+m a

a =
M sin q - m sin f g

M+m

b) Now we have to consider the effects of friction.  Since friction opposes motion, the force of
friction will act up the plane for block A, and down the plane for B. The friction force is m N where
m is the coefficient of friction and N is the normal force between the block and the plane.  

On an inclined plane, the component of gravity perpendicular to the plane is g cos q, so we can write
Newton' s second law as :

SFA = T - M g sin q + mM g cos q = -M a

SFB = T - m g sin f - mm g cos f = m a

If you subtract equations and solve for a, you will obtain :

a =
M sin q - m sin f g - m g M cos q +m cos f

m+M

Note that this expression yields the answer in part a) if m = 0 as expected.

2. Let' s begin by writing Newton' s second Law for the 20 kg block (let' s call its mass m).  In the
horizontal direction, the only forces acting are tension and friction, and in the vertical direction,
weight and the normal force.  Since we are being asked to find the conditions under which the block
does not accelerate, we set the sum of forces to zero :

SFhor = T - f = T - mN = 0



SFvert = N - m g = 0 fl N = m g

We can easily combine these equations to find that T = m m g  (where m is the coefficient of static
friction).  

Now we have to find an expression for the tension in the rope (let' s call it rope 1) that is connected
to m.  We will have to do this in steps, starting with finding the tension in the rope connected to
mass A (let' s call this rope 2).  If the system is in equilibrium, then the tension in that rope must
equal the weight of A.  Next, consider the junction of the three ropes.  We can apply Newton' s
second law to any part of this system, and this enables us to recognize that the sum of forces acting
on this junction is zero.  This means that the vertical component of the slanting rope must equal the
weight of block A.  If we call this rope 3, we can write :

T3 sin 45 = MA g fl T3 =
MA g

sin 45

The horizontal component of tension in rope 3 must then equal the horizontal component of tension
in rope 1 (which is what we wanted to figure out once we started), and the horizontal component of
tension in rope 3 is :

T3 horizontal = T3 cos 45 =
MA g

sin 45
ÿ cos 45 = MA g

The last step occurs because sin 45 = cos 45.  

Now we combine results.  We know that the tension in rope 1 is :

T1 = mm g

and this must equal the horizontal component of tension in rope 3, or :

T1 = T3 horizontal fl mm g = MA g fl MA = mm = 0.6 ÿ 20 kg = 12 kg

3.  Here we need to recognize that if the astronaut exerts a force on the satellite, the satellite will
exert the same magnitude of force on the astronaut.   The objects exert a force on each other only
during the time of contact; once they separate there are no longer forces acting on them and they
will travel at the speed they achieved at the moment of separation.  
  
  If the astronaut exerts a 100 N force on the 640 kg satellite, the satellite achieves an acceleration of

asat =
100 N

640 kg
= 0.16 m s-2

In the 0.5 s of contact, the satellite (starting from rest) will achieve a speed of :

vsat = asat t = 0.16 m s-2 ÿ 0.5 s = 0.08 m  s

The satellite exerts the same force on the 80 kg person whose acceleration is

aperson =
100 N

80 kg
= 1.25 m s-2
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and the person will reach a velocity of 0.62 m/s during the time of contact.  The relative velocity of
the two objects is then 0.70 m/s, and after a minute they will be 0.70 m/s · 60 s = 42 m apart.

4.  We are told that the force at one end of the cable is 100 N.  If the cable were massless, then we
would know that the tension in the cable would be 100 N throughout.  However, this is a massive
cable so the tension at the other end will be less than 100 N.
  
  Let' s analyze the situation by applying Newton' s second law to the 20 kg block.  If the block is
moving across a frictionless surface, the only force acting on it is the tension from the cable. We are
told that the block reaches a speed of 4 m/s in 2 s, indicating an acceleration of 2 m  s2.  If a 20 kg

block accelerates at this rate, the force acting on it must be 40N (from F = m a).  Thus, the differ-
ence in tension across the ends of the cable is 60N (what is the mass of the cable?).

5.  We will need to be careful about units here.  If the 140 g (= 0.14 kg) ball slows from 30 m/s to 0
in 0.0015 s, the acceleration of the ball is :

a =
0 m  s - 30 m  s

0.0015 s
= -20, 000 m s-2

and the force acting on the ball is F = m a = -2800 N.  By Newton' s third law, if this is the force
your face exerts on the ball, this is also the force the ball exerts on your face.  Using the data in the
problem, your forehead is safe, but your cheekbone will fracture.

6.  We will apply Newton' s second law to each mass (we cannot assume the system is moving at
constant speed).  Let' s call the larger mass M and the smaller mass m, and set down as the positive
direction.  

There is a component of gravity acting down the plane, the force of friction acting up the plane, and
the tension in the rope.  The tension acts up the plane on the 2 kg block, but down the plane for the 1
kg block.  The blocks are conected so have the same acceleration, and we must be careful to use
different coefficients of friction for the two blocks.  Thus, the laws of motion become :

SFM = M g sin q - mM M g cos q - T = M a

SFm = m g sin q - mm m g cos q + T = m a

I think it will be easier to eliminate T first and solve for acceleration, then use the value of a to find
T.  Adding equations this time, we get :

M+m g sin q - mM M+ mm m g cos q = M+m a

or 

a =
M+m g sin q - mM M+ mm m g cos q

M+m

Using the numbers given :

a =
g3 kg sin 20- 0.1 ÿ 2 kg+ 0.2 ÿ 1 kg cos 20

3 kg
= 2.1 m  s2

Using this value for the acceleration in either of the equations above will yield the tension in the

phys111-2015hw7s.nb  3



string.  Using the equation for M we get :

T = M g sin q - mM M g cos q - M a = 2 kg9.8 m  s2 sin 20 - 0.1 cos 20- 2.1 m  s2 = 0.66 N

7. Call the rope to the right rope 1 and the other rope 2. Down will be negative; to the right will be
positive. The blocks are moving as a system, so will all have the same magnitude of acceleration.
Newton' s second law for each mass then becomes :

(1)SF3 kg = T1 - 3 g = - 3 a

(2)S F2 kg = T1 - T2 - 2 m g = 2 a

(3)SF1 kg = T2 - g = a

Subtract eq. (3) from eq. (1) to get an expression for T1 - T2 that we can use later :

T1 -T2 - 2 g = -4 a or T1 -T2 = 2 g - 4 a

Use this result to replace the tensions in eq. (2) :

2 g- 4 a - 2 m g = 2 a or 6 a = 2 g 1- m
Therefore, a =

1

3
g 1- m = g 1- 0.3

3
= 0.23 g
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