EXTRACTING SOLUTIONS FROM THE SOLVE FUNCTION

In lab we studied how to use the Solve function in Mathematica to, well, solve both simple and more complex equations. Let' s apply this to the example in class : determine how long an object will be in flight if it is thrown vertically down with an initial speed of $3 \mathrm{~m} / \mathrm{s}$ from a height of 100 m . We know that the equation of motion for this object (neglecting friction) is

$$
\mathrm{y}(\mathrm{t})=100-3 \mathrm{t}-4.9 \mathrm{t}^{2}
$$

and solving the resulting quadratic when $y(t)=0$ will yield the time of flight. In Mathematica, this is done simply via :
(min54): $=$ Clear [y, t$]$
$y\left[t_{-}\right]:=100-3 t-4.9 t^{\wedge} 2$
Solve $[y[t]=0, t$]
Out[56] $=\{\{t \rightarrow-4.83402\},\{t \rightarrow 4.22178\}\}$
And we get two solutions, knowing that only the second one is meaninfgul. How can we extract this one solution from the set of solutions :

$O u t[57]=\{t \rightarrow 4.22178\}$
The notation [[Q]] will extract the Qth element of a list. However, suppose we wanted to use this value of time to do a further calculation. Suppose our object wasn' t thrown down vertically, but thrown horizontally with an initial horizontal velocity of $5 \mathrm{~m} / \mathrm{s}$. How could we determine the horizontal distance traveled by multiplying the horizontal velocity by this time of flight? We use the "slash-dot" command :
$\ln [58]:=$ timeofflight $=\mathrm{t} / . \operatorname{Solve}[\mathrm{y}[\mathrm{t}]==0, \mathrm{t}][[2]]$
range = 5 timeofflight
Out[58]= 4.22178
Out[59]= 21.1089
You see in the first output line that the time of flight appears as a number (not an element in a list), and the second output line is the correct value of range. The slash dot command substituted into t the result of Solve[y[t] == $0, \mathrm{t}][[2]]$. In the way I solved the semester project, I made use of this formalism to get very important intermediate results. There are many ways of solving the semester project, but this is a useful technique to know.

