Fourier Series on other Intervals : Notes from Class

In class on W we investigated Fourier series on intervals other than $(-\pi, \pi)$. For functions that are 2 L periodic (where 2 L is the wavelength), we compute Fourier coefficients and the Fourier series making the modifications derived in class :

$$
\mathrm{f}(\mathrm{x})=\frac{\mathrm{a}_{0}}{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} \pi \mathrm{x} / \mathrm{L})+\mathrm{b}_{\mathrm{n}} \sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}} \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L})
$$

where :

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos (n \pi x / L) d x \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin (n \pi x / L) d x
$$

Example 1: Consider $\mathrm{f}(\mathrm{x})=x^{2}$ on $(-2,2)$:
It is important to recall that 2 L is the length of the interval, therefore $2 \mathrm{~L}=2-(-2)$ so that the value of L to use in the calculations is $\mathrm{L}=2$.

$$
\mathrm{a}_{0}=\frac{1}{2} \int_{-2}^{2} \mathrm{x}^{2} \mathrm{dx} \quad \mathrm{a}_{\mathrm{n}}=\frac{1}{2} \int_{-2}^{2} \mathrm{x}^{2} \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx} \quad \mathrm{~b}_{\mathrm{n}}=\frac{1}{2} \int_{-2}^{2} \mathrm{x}^{2} \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}
$$

Now, since $f(x)$ is even on $(-2,2)$ we can employ symmetry to write :

$$
\mathrm{a}_{0}=\frac{2}{2} \int_{0}^{2} \mathrm{x}^{2} \mathrm{dx} \quad \mathrm{a}_{\mathrm{n}}=\frac{2}{2} \int_{0}^{2} \mathrm{x}^{2} \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx} \quad \mathrm{~b}_{\mathrm{n}}=0
$$

Now, going the lazy route and letting Mathematica do the heavy lifting :

```
\(\ln [330]=\mathbf{a 0}=\) Integrate \(\left[\mathbf{x}^{2},\{\mathbf{x}, 0,2\}\right]\)
Out[30] \(=\frac{8}{3}\)
\(\operatorname{In}[33]]=\mathbf{a n}=\) Integrate \(\left[\mathrm{x}^{2} \boldsymbol{\operatorname { C o s }}[\mathrm{n} \pi \mathrm{x} / 2],\{\mathrm{x}, 0,2\}\right]\)
Out[332] \(=\frac{8\left(2 n \pi \operatorname{Cos}[n \pi]+\left(-2+n^{2} \pi^{2}\right) \operatorname{Sin}[n \pi]\right)}{n^{3} \pi^{3}}\)
```

and let' s just be sure :
$\ln [37]]=\mathrm{bn}=\operatorname{Integrate}\left[\mathrm{x}^{\wedge} 2 \operatorname{Sin}[\mathrm{n} \pi \mathrm{x} / 2],\{\mathrm{x},-2,2\}\right]$
oul[37] $=0$
It is easy to show that the a coefficients reduce to :

$$
\mathrm{a}_{\mathrm{n}}=\frac{16}{\mathrm{n}^{2} \pi^{2}}(-1)^{\mathrm{n}}
$$

so that our Fourier series is :

$$
\mathrm{f}(\mathrm{x})=\frac{4}{3}+\frac{16}{\pi^{2}} \sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}} \cos (\mathrm{n} \pi \mathrm{x} / 2)}{\mathrm{n}^{2}}
$$

Verifying through Mathematica :
$\ln [339]:=\operatorname{Plot}\left[\frac{4}{3}+\left(16 / \pi^{2}\right) \operatorname{Sum}\left[(-1)^{n} \operatorname{Cos}[n \pi x / 2] / n^{2},\{n, 1,21\}\right],\{x,-6,6\}\right]$
ut[339]=

Note that the values are consistent with our function (f $(2)=4)$ and the function repeats with a periodicity of 4 .
Now, let' s examine the same function on (0,4). Since our limits are not symmetric across the origin, we cannot make use of symmetry arguments. Our integrals become :

$$
\mathrm{a} 0=\frac{1}{2} \int_{0}^{4} \mathrm{x}^{2} \mathrm{dx} \quad \text { an }=\frac{1}{2} \int_{0}^{4} \mathrm{x}^{2} \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx} \quad \mathrm{~b}_{\mathrm{n}}=\frac{1}{2} \int_{0}^{4} \mathrm{x}^{2} \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}
$$

Even though the limits have changed, $\mathrm{L}=2$ since the total length of the interval, $2 \mathrm{~L}=4$.
Computing coefficients :
Clear [a0, an, bn, L, f]
$\ln [340]:=\mathbf{L}=\mathbf{2}$;
(* I know I have stressed we should not use capital letters for variables;
but I know that "L" is not restricted for Mathematica use, so let's use it. *)
$f\left[x _\right]:=x^{2}$
$a 0=(1 / L)$ Integrate $[f[x],\{x, 0,4\}]$
an $=(1 / L)$ Integrate[f[x] $\operatorname{Cos}[n \pi x / L],\{x, 0,4\}]$
bn = (1/L) Integrate[f[x] Sin[n $\pi x / L],\{x, 0,4\}]$
Out[342]= $\frac{32}{3}$
Out[343] $=\frac{8\left(2 n \pi \operatorname{Cos}[2 n \pi]+\left(-1+2 n^{2} \pi^{2}\right) \operatorname{Sin}[2 n \pi]\right)}{n^{3} \pi^{3}}$
Out[344] $=-\frac{8\left(1+\left(-1+2 n^{2} \pi^{2}\right) \operatorname{Cos}[2 n \pi]-2 n \pi \operatorname{Sin}[2 n \pi]\right)}{n^{3} \pi^{3}}$
And we get our three outputs. Knowing that $\sin (2 n \pi)$ is always zero for integer values of n, these complicated expressions reduce quite nicely, and we have :

$$
\mathrm{a}_{\mathrm{n}}=\frac{16}{\mathrm{n}^{2} \pi^{2}} \quad \mathrm{~b}_{\mathrm{n}}=\frac{-16}{\mathrm{n} \pi}
$$

Our Fourier series then becomes :

$$
\mathrm{f}(\mathrm{x})=\frac{32}{6}+\sum_{\mathrm{n}=1}^{\infty} \frac{16}{\pi^{2}} \frac{\cos (\mathrm{n} \pi \mathrm{x} / 2)}{\mathrm{n}^{2}}+\sum_{\mathrm{n}=1}^{\infty}\left(\frac{-16}{\pi}\right) \frac{\sin (\mathrm{n} \pi \mathrm{x} / 2)}{\mathrm{n}^{2}}
$$

Plotting three cycles of this function using the first 31 terms of the expansion :

And we reproduce our function over three cycles.

