
Fourier Series on other Intervals : Notes
from Class

In class on W we investigated Fourier series on intervals other than (-p, p).  For functions that are 2
L periodic (where 2 L is the wavelength), we compute Fourier coefficients and the Fourier series
making the modifications derived in class :
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Example 1 :  Consider f (x) = x2  on (-2, 2):

It is important to recall that 2L is the length of the interval, therefore 2 L = 2 - (-2) so that the value
of L to use in the calculations is L = 2.
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Now, since f (x) is even on (-2, 2) we can employ symmetry to write :
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Now, going the lazy route and letting Mathematica do the heavy lifting :

In[330]:= a0  Integratex2, x, 0, 2

Out[330]=
8

3

In[332]:= an  Integratex2 Cosn  x  2, x, 0, 2

Out[332]=

8 2 n  Cosn   2  n2 2 Sinn 
n3 3

and let' s just be sure :
In[337]:= bn  Integratex^2 Sinn  x  2, x, 2, 2

Out[337]= 0

It is easy to show that the a coefficients reduce to :

an =
16

n2 p2
-1n

so that our Fourier series is :
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Verifying through Mathematica :

In[339]:= Plot4
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Out[339]=
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Note that the values are consistent with our function (f (2) = 4 ) and the function repeats with a
periodicity of 4.

Now, let' s examine the same function on (0, 4).   Since our limits are not symmetric across the
origin, we cannot make use of symmetry arguments.  Our integrals become :
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Even though the limits have changed, L = 2 since the total length of the interval, 2 L = 4.

Computing coefficients :
Cleara0, an, bn, L, f

In[340]:= L  2;

 I know I have stressed we should not use capital letters for variables;

but I know that "L" is not restricted for Mathematica use, so let's use it. 
fx_ : x2

a0  1  L Integratefx, x, 0, 4
an  1  L Integratefx Cosn  x  L, x, 0, 4
bn  1  L Integratefx Sinn  x  L, x, 0, 4

Out[342]=
32

3

Out[343]=

8 2 n  Cos2 n   1  2 n2 2 Sin2 n 
n3 3

Out[344]= 
8 1  1  2 n2 2 Cos2 n   2 n  Sin2 n 

n3 3

And we get our three outputs.  Knowing that sin (2 n p) is always zero for integer values of n, these
complicated expressions reduce quite nicely, and we have :

an =
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n2 p2
bn =

-16

n p
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Our Fourier series then becomes :
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Plotting three cycles of this function using the first 31 terms of the expansion :

In[345]:= Plot32  6  Sum16  2 Cosn  x  2  n2  16   Sinn  x  2  n, n, 1, 31, x, 4, 8

Out[345]=
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And we reproduce our function over three cycles.
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