PRACTICE PROBLEMS FOR SUMMATION NOTATION

1. Evaluate:

a) $\epsilon_{\mathrm{ijk}} \delta_{\mathrm{jk}}$

Solution : There are two possible case, $\mathrm{j}=\mathrm{k}$ and $\mathrm{j} \neq \mathrm{k}$. If $\mathrm{j}=\mathrm{k}$, the ϵ term is zero and the whole product is zero. If $\mathrm{j} \neq \mathrm{k}$, the δ is zero. In either case, the value of the product is zero.
b) $\epsilon_{\mathrm{jk} 2} \epsilon_{\mathrm{k} 2 \mathrm{j}}$

Solution : We can use the $\epsilon-\delta$ relationship if we permute cyclically one set of indices :
$\epsilon_{\mathrm{jk} 2} \epsilon_{\mathrm{k} 2 \mathrm{j}=\epsilon_{\mathrm{jk} 2} \epsilon_{\mathrm{jk} 2}}=\delta_{\mathrm{kk}} \delta_{22}-\delta_{\mathrm{k} 2} \delta_{2 \mathrm{k}}=3 \cdot 1-\delta_{22}=3-1=2$
2. Express in terms of Kronecker deltas:
a) $\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{pjq}}$
b) $\epsilon_{\mathrm{abc}} \epsilon_{\mathrm{pqc}}$

Solutions:
In a), we have a repeated index (j) in the same location, so we expand with respect to j :
$\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{pjq}}=\delta_{\mathrm{ip}} \delta_{\mathrm{kq}}-\delta_{\mathrm{iq}} \delta_{\mathrm{kp}}$
In b), expand with respect to c:
$\epsilon_{\mathrm{abc}} \epsilon_{\mathrm{pqc}}=\delta_{\mathrm{ap}} \delta_{\mathrm{bq}}-\delta_{\mathrm{aq}} \delta_{\mathrm{cp}}$
3. Prove the Jacobi identity (problem 14 on p. 284).

Solution : Expand each triple product according to the BAC - CAB rule :

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=[\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})]+[\mathbf{C}(\mathbf{A} \cdot \mathbf{B})-\mathbf{A}(\mathbf{B} \cdot \mathbf{C})]+ \\
& {[\mathbf{A}(\mathbf{B} \cdot \mathbf{C})-\mathbf{B}(\mathbf{C} \cdot \mathbf{A})]}
\end{aligned}
$$

I have color coded terms that cancel showing that the entire expression sums to zero.
4. Prove $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$

Since we are taking the dot product of the vectors formed by $A \times B$ and $C \times D$, we want to produce the i component of each vector, so we write:
$(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D}) \rightarrow \epsilon_{\mathrm{ijk}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \epsilon_{\mathrm{imn}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}=\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{imn}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}$
Expand using the $\epsilon-\delta$ relationship :
$\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{imn}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}=\delta_{\mathrm{jm}} \delta_{\mathrm{kn}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}-\delta_{\mathrm{jn}} \delta_{\mathrm{km}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}$
In the first term on the rigth, $\mathrm{j}=\mathrm{m}$ and $\mathrm{k}=\mathrm{n}$; in the second term, $\mathrm{j}=\mathrm{n}$ and $\mathrm{k}=\mathrm{m}$. Making these substitutions:
$\delta_{j m} \delta_{k n} \mathrm{~A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}-\delta_{\mathrm{jn}} \delta_{\mathrm{km}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}=\mathrm{A}_{\mathrm{m}} \mathrm{B}_{\mathrm{n}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}-\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{m}} \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{n}}$
Grouping according to subscripts we obtain :

$$
\begin{aligned}
& A_{m} B_{n} C_{m} D_{n}-A_{n} B_{m} C_{m} D_{n}=\left(A_{m} C_{m}\right)\left(B_{n} D_{n}\right)-\left(B_{m} C_{m}\right)\left(A_{n} D_{n}\right) \\
& =(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})
\end{aligned}
$$

