PHYS 301
 FIRST HOUR EXAM SOLUTIONS

1. For the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}0, & -2<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<2\end{cases}
$$

we are asked to find the Fourier coefficients, the first three terms of the series, and finally use Parseval's theorem.
a) The function is 2 L periodic on $[-2,2]$ which means that $2 \mathrm{~L}=4$ and $\mathrm{L}=2$. Computing coefficients:

$$
\mathrm{a}_{\mathrm{o}}=\frac{1}{2 \mathrm{~L}} \int_{0}^{2} 1 \mathrm{dx}=\frac{1}{4} \cdot 2=\frac{1}{2}
$$

or, you could have just noted that this was the average value of f on the interval.

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=\frac{1}{2} \int_{0}^{2} \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\left.\frac{1}{2} \cdot \frac{2}{\mathrm{n} \pi} \sin (\mathrm{n} \pi \mathrm{x} / 2)\right|_{0} ^{2}=\frac{1}{\mathrm{n} \pi}(\sin (\mathrm{n} \pi)-\sin 0)=0 \\
& \mathrm{~b}_{\mathrm{n}}=\frac{1}{2} \int_{0}^{2} \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\left.\frac{1}{2} \cdot \frac{-2}{\mathrm{n} \pi} \cos (\mathrm{n} \pi \mathrm{x} / 2)\right|_{0} ^{2}=\frac{-1}{\mathrm{n} \pi}(\cos (\mathrm{n} \pi)-\cos (0) \\
& =\frac{1}{\mathrm{n} \pi}\left(1-(-1)^{\mathrm{n}}\right)= \begin{cases}0, & \text { n even } \\
2 / \mathrm{n} \pi, & \text { n odd }\end{cases}
\end{aligned}
$$

b) The Fourier series is then:

$$
\mathrm{f}(\mathrm{x})=\frac{1}{2}+\frac{2}{\pi}\left[\operatorname{Sin}[\pi \mathrm{x} / 2]+\frac{\operatorname{Sin}[3 \pi \mathrm{x} / 2]}{3}+\frac{\operatorname{Sin}[5 \pi \mathrm{x} / 2]}{5}+\ldots\right]
$$

c) Parseval' s theorem states :
average value of $(f(x))^{2}$ on the interval $=\left(\mathrm{a}_{\mathrm{o}}\right)^{2}+\frac{1}{2} \Sigma \mathrm{a}_{\mathrm{n}}^{2}+\frac{1}{2} \Sigma \mathrm{~b}_{\mathrm{n}}^{2}$
For this function, the average value of f^{2} is:

$$
\frac{1}{4} \int_{-2}^{2} f(x) d x=\frac{1}{4} \int_{0}^{2} 1 d x=\frac{1}{2}
$$

Inserting values from above:

$$
\begin{gathered}
\frac{1}{2}=\left(\frac{1}{2}\right)^{2}+0+\frac{1}{2} \sum_{\text {odd }}^{\infty}\left(\frac{2}{\mathrm{n} \pi}\right)^{2} \\
\frac{1}{2}=\frac{1}{4}+\frac{1}{2}\left(\frac{4}{\pi^{2}}\right)_{\text {odd }}^{\infty} \frac{1}{\mathrm{n}^{2}} \Rightarrow \sum_{\text {odd }}^{\infty} \frac{1}{\mathrm{n}^{2}}=\frac{\pi^{2}}{8}
\end{gathered}
$$

2. For the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-1, & -1<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<3\end{cases}
$$

The length of the interval is 4 , so $2 L=4$ and $L=2$. The Fourier coefficients are computed from :

$$
\begin{gathered}
a_{o}=\frac{1}{4}\left[\int_{-1}^{0}(-1) d x+\int_{0}^{3} 1 d x\right]=\frac{1}{2} \\
a_{n}=\frac{1}{2}\left[\int_{-1}^{0}-\cos (n \pi x / 2) d x+\int_{0}^{3} \cos (n \pi x / 2) d x\right] \\
b_{n}=\frac{1}{2}\left[\int_{-1}^{0}-\sin (n \pi x / 2) d x+\int_{0}^{3} \sin (n \pi x / 2) d x\right]
\end{gathered}
$$

3. a) Begin with the transformation equation :

$$
\begin{gathered}
\mathrm{x}=\rho \cos \phi \quad \mathrm{y}=\rho \sin \phi \\
\mathrm{dx}=\cos \phi \mathrm{d} \rho-\rho \sin \phi \mathrm{d} \phi \\
\mathrm{dy}=\sin \phi \mathrm{d} \rho+\rho \cos \phi \mathrm{d} \phi \\
(\mathrm{ds})^{2}=(\mathrm{dx})^{2}+(\mathrm{dy})^{2} \Rightarrow \\
(\mathrm{ds})^{2}=\cos ^{2} \phi(\mathrm{~d} \rho)^{2}-2 \rho \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi+\rho^{2} \sin ^{2} \phi(\mathrm{~d} \phi)^{2} \\
+\sin ^{2} \phi(\mathrm{~d} \rho)^{2}+2 \rho \cos \phi \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi+\rho^{2} \cos ^{2} \phi(\mathrm{~d} \phi)^{2} \\
=\left[\cos ^{2} \phi+\sin ^{2} \phi\right](\mathrm{d} \rho)^{2}+\rho^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)(\mathrm{d} \phi)^{2} \\
=(\mathrm{d} \rho)^{2}+\rho^{2}(\mathrm{~d} \phi)^{2}
\end{gathered}
$$

therefore,

$$
\mathrm{h}_{\rho}=1 \quad \text { and } \mathrm{h}_{\phi}=\rho
$$

b) We begin by writing the position vector :

$$
\begin{gathered}
\mathbf{r}=\rho \cos \phi \hat{\mathbf{x}}+\rho \sin \phi \hat{\mathbf{y}} \\
\hat{\rho}=\frac{\frac{\partial \mathbf{r}}{\partial \rho}}{\left|\frac{\partial \mathbf{r}}{\partial \rho}\right|}=\frac{\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}}{\sqrt{\cos ^{2} \phi+\sin ^{2} \phi}}=\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}} \\
\hat{\boldsymbol{\phi}}=\frac{\frac{\partial \mathbf{r}}{\partial \phi}}{\left|\frac{\partial \mathbf{r}}{\partial \phi}\right|}=\frac{-\rho \sin \phi \hat{\mathbf{x}}+\rho \cos \phi \hat{\mathbf{y}}}{\sqrt{\rho^{2} \cos ^{2} \phi+\rho^{2} \sin ^{2} \phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}
\end{gathered}
$$

c) Given :

$$
\mathbf{r}=\rho \hat{\boldsymbol{\rho}} \Rightarrow \mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}=\dot{\rho} \hat{\boldsymbol{\rho}}+\rho \dot{\hat{\rho}}
$$

To compute the time derivative of the unit vector in ρ, we use the definition of $\hat{\boldsymbol{\rho}}$ from part \mathbf{b}):

$$
\stackrel{\hat{\rho}}{\rho}=\frac{\mathrm{d}}{\mathrm{dt}} \hat{\boldsymbol{\rho}}=\frac{\mathrm{d}}{\mathrm{dt}}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}})=\dot{\phi}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}})=\dot{\phi} \hat{\boldsymbol{\phi}}
$$

where we use the definition of $\hat{\boldsymbol{\phi}}$ from part b). Therefore, we can write :

$$
\mathbf{v}=\dot{\rho} \hat{\rho}+\rho \dot{\phi} \hat{\boldsymbol{\phi}}
$$

d) If the particle moves in a circle at constant speed, we know that $\rho=$ constant so that $\dot{\rho}=0$, the we have for the dot product of $\mathrm{r} \cdot \mathrm{v}$:

$$
\mathbf{r} \cdot \mathbf{v}=\rho \hat{\boldsymbol{\rho}} \cdot \rho \dot{\phi} \hat{\boldsymbol{\phi}}=\rho^{2} \dot{\phi} \hat{\boldsymbol{\rho}} \cdot \hat{\boldsymbol{\phi}}
$$

Since this is an orthogonal transformation, the unit vectors are perpendicular, and the angle between them is 90°, a result you already know from introductory physics and calculus (the velocity (tangent line) is perpendicular to the instantaneous position vector.).
4. The Fourier coefficients for an odd function of period $1 / 262 \mathrm{~s}$ are :

$$
\begin{gathered}
\mathrm{b}_{\mathrm{n}}=\frac{2}{\pi \mathrm{n}}\left(\frac{-15}{8} \cos (\mathrm{n} \pi / 2)+1+\frac{7}{8} \cos (\mathrm{n} \pi)\right) \\
\mathrm{b}_{1}=\frac{2}{\pi}\left(1-\frac{7}{8}\right)=\frac{1}{4 \pi} \\
\mathrm{~b}_{2}=\frac{2}{2 \pi}\left(\frac{-15}{8}(-1)+1+\frac{7}{8}\right)=\frac{30}{8 \pi}=\frac{15}{4 \pi} \\
\mathrm{~b}_{3}=\frac{2}{3 \pi}\left(1-\frac{7}{8}\right)=\frac{1}{12 \pi}=\frac{1}{3} \cdot \frac{1}{4 \pi} \\
\mathrm{~b}_{4}=\frac{2}{4 \pi}\left(\frac{-15}{8}+1+\frac{7}{8}\right)=0
\end{gathered}
$$

For this function, $2 \mathrm{~L}=1 / 262 \mathrm{~s}$ so $\mathrm{L}=1 / 524 \mathrm{~s}$, and the Fourier expansion is:

$$
\mathrm{p}(\mathrm{t})=\frac{1}{4 \pi}\left[\sin (524 \pi \mathrm{t})+15 \sin (2 \cdot 524 \pi \mathrm{t})+\frac{1}{3} \sin (3 \cdot 524 \pi \mathrm{t})+\ldots\right]
$$

and the pressure wave looks like:

In[219]:= Clear [b]
$\mathrm{b}\left[\mathrm{n}_{-}\right]:=2 /(\pi n)(-15 \operatorname{Cos}[\mathrm{n} \pi / 2] / 8+1+7 \operatorname{Cos}[\mathrm{n} \pi] / 8)$
Plot[Sum[b[n] Sin[524n $\pi t],\{n, 1,31\}],\{t,-1 / 262,1 / 262\}$,
Ticks $\rightarrow\{\{-1 / 262,-3 / 1024,-1 / 524,0,1 / 524,1 / 262\},\{-1,1\}\}]$

Note that the coefficient of the $\mathrm{n}=2$ term is much larger than all other terms; this is the overtone that contributes the most intensity to the sound wave, and the overtone that you would hear most strongly.

