PHYS 301 SECOND HOUR EXAM SOLUTIONS

1. We begin writing our identity in summation notation :

$$
\begin{aligned}
\nabla & \cdot(\mathbf{A} \times \mathbf{B})=\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \epsilon_{\mathrm{ijk}} \mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}=\epsilon_{\mathrm{ijk}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{j}} \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~B}_{\mathrm{k}}+\mathrm{B}_{\mathrm{k}} \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~A}_{\mathrm{j}} \\
& =-\mathbf{A} \cdot(\nabla \times \mathbf{B})+\mathbf{B} \cdot(\nabla \times \mathbf{A})
\end{aligned}
$$

The first term is negative since the order of indices is anti-cyclic ($\mathrm{i} \times \mathrm{k}=-\mathrm{j}$), but the second term is cyclic and thus positive.
2. Our ODE is :

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0
$$

Our trial solution is

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Substituting into the original ODE yields:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+\alpha^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Re - indexing gives :

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+\alpha^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

This yields the recursion relation:

$$
a_{n+2}=n \frac{(n-1)+n-\alpha^{2}}{(n+2)(n+1)} a_{n}=\frac{n^{2}-\alpha^{2}}{(n+2)(n+1)} a_{n}
$$

For $\alpha=4$, we have :

$$
\begin{aligned}
& \mathrm{a}_{2}=\frac{\left(0-4^{2}\right) \mathrm{a}_{0}}{2 \cdot}=-8 \mathrm{a}_{0} \\
& \mathrm{a}_{4}=\frac{\left(2^{2}-4^{2}\right) \mathrm{a}_{2}}{4 \cdot 3}=-\mathrm{a}_{2}=+8 \mathrm{a}_{0} \\
& \mathrm{a}_{6}=\frac{\left(4^{2}-4^{2}\right) \mathrm{a}_{4}}{6 \cdot 5}=0
\end{aligned}
$$

So the branch that truncates is the even branch, and its solution is:

$$
y=a_{0}\left(1-8 x^{2}+8 x^{4}\right)
$$

Or the Chebyshev polynomial of the fourth order.
3. This proof was worked out in detail in class.
4. Using the information detailed in classnotes and in lecture,

$$
\text { we can write the total potential as }: \mathrm{V}=\mathrm{kq}\left(\frac{-1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}\right)
$$

where r_{1} is the distance between the -q charge and O and r_{2} is the distance between q and O. If r is the distance from the origin to O , and θ is the angle between the x axis and r , we can use the law of cosines to write:

$$
V=\frac{k q}{r}\left(\frac{1}{\sqrt{a+(a / r)^{2}-2(a / r) \cos (90-\theta)}}-\frac{1}{\sqrt{1+(a / r)^{2}-2(a / r) \cos \theta}}\right)
$$

Since $\cos (90-\theta)=\sin \theta$, we can write these as :

$$
\mathrm{V}=\frac{\mathrm{kq}}{\mathrm{r}}\left(\sum_{\mathrm{m}=0}^{\infty}\left(\mathrm{P}_{\mathrm{m}}(\sin \theta)-\mathrm{P}_{\mathrm{m}}(\cos \theta)\right)(\mathrm{a} / \mathrm{r})^{\mathrm{m}}\right.
$$

If we expand this we get:

$$
\begin{aligned}
\mathrm{V}= & \frac{\mathrm{kq}}{\mathrm{r}}\left[\left(\mathrm{P}_{\mathrm{o}}(\sin \theta)-\mathrm{P}_{\mathrm{o}}(\cos \theta)(\mathrm{a} / \mathrm{r})^{0}+\left(\mathrm{P}_{1}(\sin \theta)-\mathrm{P}_{1}(\cos \theta)(\mathrm{a} / \mathrm{r})^{1}\right.\right.\right. \\
& +\left(\mathrm{P}_{2}(\sin \theta)-\mathrm{P}_{2}(\cos \theta)(\mathrm{a} / \mathrm{r})^{2}+\left(\mathrm{P}_{3}(\sin \theta)-\mathrm{P}_{3}(\cos \theta)(\mathrm{a} / \mathrm{r})^{3}+,,,\right]\right. \\
= & \frac{\mathrm{kq}}{\mathrm{r}}\left[(1-1)+(\sin \theta-\cos \theta)(\mathrm{a} / \mathrm{r})+\left(\frac{1}{2}\left(3 \sin ^{2} \theta-1\right)-\frac{1}{2}\left(3 \cos ^{2}-1\right)\right)(\mathrm{a} / \mathrm{r})^{2}\right. \\
& \left.+\left(\frac{1}{2}\left(5 \sin ^{3} \theta-3 \sin \theta\right)-\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)\right)(\mathrm{a} / \mathrm{r})^{3}+6 \ldots\right]
\end{aligned}
$$

more simplification can be done, but all the information is here.
5. The wave equation :

$$
\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{t}^{2}}
$$

Our trail solution is $y=X(x) T(t)$
Substituting into the original PDE:

$$
\mathrm{X}^{\prime \prime} \mathrm{T}=\frac{1}{\mathrm{v}^{2}} \mathrm{XT}^{\prime \prime}
$$

Divide by the solution:

$$
\frac{X^{\prime \prime T}}{X T}=\frac{1}{v^{2}} \frac{X T "}{X T}
$$

which leads to:

$$
\frac{X^{\prime \prime}}{X}=\frac{1}{v^{2}} \frac{T^{\prime \prime}}{T}
$$

As we described in class, we know that each side of the equation must be equal to a constant. Since the two sides are equal, they must equal the same constant. A common error made on the exam was to set one side to a positive constant and the other to a negtive constant.

Now, since we are told that the string is tied down at both ends, we can conclude that our solutions must be sinusoidal in nature, meaning that:

$$
\frac{X^{\prime \prime}}{X}=-k^{2}=\frac{1}{v^{2}} \frac{T^{\prime \prime}}{T}
$$

leading to the two ODEs:

$$
\mathrm{X}^{\prime \prime}+\mathrm{k}^{2} \mathrm{X}=0 \quad \mathrm{~T}^{\prime \prime}+\mathrm{k}^{2} \mathrm{v}^{2} \mathrm{~T}=0
$$

leading to the solution:

$$
y(x, t)=(A \cos k x+B \sin k x)(C \cos (k v t)+D \sin (k v t))
$$

This is as far as I asked you to go on this test. We can determine the values of A and k from the statement "the string is tied at both ends"). This tells us that $\mathrm{y}(0, \mathrm{t})=0=\mathrm{y}(\mathrm{L}, \mathrm{t})$

$$
\begin{gathered}
y(0, t)=(A \cos 0+B \sin 0)=0 \Rightarrow A=0 \\
y(L, t)=0=B \sin (k L)=0 \Rightarrow k L=n \pi \Rightarrow k=\frac{n \pi}{L}
\end{gathered}
$$

We will need two statements about the string at $\mathrm{t}=0$ to determine C and D . We will examine this in class Friday.

