# SERIES SOLUTION TO THE DIFFERENTIAL EQUATION DONE FOR GROUP WORK 

$$
y^{\prime \prime}+x^{2} y=0
$$

Assume a solution of the form: $\mathrm{y}=\sum_{n=0} a_{n} x^{n}$
Substitute the trial solution into the differential equation:

$$
\sum_{n=2} n(n-1) a_{n} x^{n-2}+\sum_{n=0} a_{n} x^{n+2}
$$

Set $\mathrm{k}=\mathrm{n}-2($ so $\mathrm{n}=\mathrm{k}+2)$ in the first sum; set $\mathrm{k}=\mathrm{n}+2($ so $\mathrm{n}=\mathrm{k}-2)$ in the second. Making these substitutions wherever there is an $n$ yields:

$$
\sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=2} a_{n-2} x^{n}
$$

Both sums have the same exponent, now we strip out the $\mathrm{n}=0$ and $\mathrm{n}=1$ terms from the first sum to get:

$$
2 a_{2}+6 a_{3} x+\sum_{n=2}\left[(n+2)(n+1) a_{n+2}+a_{n-2}\right] x^{n}=0
$$

Since all the coefficients on the left must equal their analogues on the right, we know that:

$$
a_{2}=a_{3}=0 \text { and } a_{n+2}=\frac{-a_{n-2}}{(n+2)(n+1)}
$$

Because the $(\mathrm{n}+2)$ coefficient is related to the ( $\mathrm{n}-2$ ) coefficient, we know that $a_{6}=a_{10}$ ( $=a_{14}$, etc) since $a_{2}=0$. Similarly, all the coefficients for $\mathrm{n}=7,11,15$ are equal to zero since $a_{3}=0$.

Using the recursion relation we get:
$\begin{array}{ll}a_{4}=\frac{-a_{0}}{4 \cdot 3} & a_{8}=\frac{-a_{4}}{8 \cdot 7}=\frac{+a_{0}}{8 \cdot 7 \cdot 4 \cdot 3} \\ a_{5}=\frac{-a_{1}}{5 \cdot 4} & a_{9}=\frac{-a_{5}}{9 \cdot 8}=\frac{+a_{1}}{9 \cdot 8 \cdot 5 \cdot 4}\end{array}$
Using these coefficients, we get for our power series:

$$
y=a_{0}\left(1-\frac{x^{4}}{4 \cdot 3}+\frac{x^{8}}{8 \cdot 7 \cdot 4 \cdot 3}-\ldots\right)+a_{1}\left(x-\frac{x^{5}}{5 \cdot 4}+\frac{x^{9}}{9 \cdot 8 \cdot 5 \cdot 4}-\ldots\right)
$$

By writing the solution this way, we see there are two independent solutions, one which is odd and one which is even.

