USEFUL MATHEMATICA FUNCTIONS AND TECHNIQUES

We are at a point in the semester when you have learned the basics of Mathematica and its uses in scientific programming. Now, let me introduce you to several useful features of Mathematica. I will show you the basics of each item, you can delve into more depth on your own using the online documentation center.
I. Solving equations :

The Solve feature is useful for solving one or more polynomial equations :
$\ln [117]:=$
Solve $\left[x^{\wedge} 2-3 x+4=0, x\right]$
ou[[117] $=\left\{\left\{x \rightarrow \frac{1}{2}(3-\right.\right.$ i $\left.\sqrt{7})\right\},\left\{x \rightarrow \frac{1}{2}(3+\right.$ ii $\left.\left.\sqrt{7})\right\}\right\}$
$\ln [120]:=$
Clear [m, M, g, a]
Solve[\{T-mg=ma, $T-M g=-M a\},\{T, a\}]$
Out[121] $=\left\{\left\{T \rightarrow \frac{2 g m M}{m+M}, a \rightarrow-\frac{g(m-M)}{m+M}\right\}\right\}$
If you want to solve equations with trig or exponential function, use FindRoot :
$\operatorname{In}[123]:=\operatorname{FindRoot}[\operatorname{Exp}[\mathbf{x}]=\mathbf{3 x},\{\mathbf{x}, \mathbf{1}\}]$
Out[123] $=\{x \rightarrow 0.619061\}$
This finds the solution to the equation :

$$
e^{x}=3 x
$$

in the vicinity of $x=1$. Plotting the functions ahead of time is useful to determine where you should begin testing for a solution.

II. Vectors and Matrices

You can write a vector in Mathematica using braces :

Clear [v]
$\mathrm{v}=\{1,2,3\}$
VectorPlot3D[v, $\{x, 0,1\},\{y, 0,1\},\{z, 0,1\}]$
Out[128]= \{1, 2, 3\}

This creates the vector :

$$
\mathbf{v}=1 \hat{\mathbf{x}}+2 \hat{\mathbf{y}}+3 \hat{\mathbf{z}}
$$

and plots it in the indicated region.
We can write a 3×3 matrix as an array of arrays :
$\operatorname{In}[130]:=$ Clear[matrix]
$\operatorname{matrixA}=\{\{1,2,3\},\{-1,0,1\},\{2,-3,4\}\}$;
matrixA // MatrixForm
Out[132]/MatrixForm=
$\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 1 \\ 2 & -3 & 4\end{array}\right)$
To find the inverse of a matrix :
$\ln [136]:=$ Inverse[matrixA]
Out[136]= $\left\{\left\{\frac{1}{8},-\frac{17}{24}, \frac{1}{12}\right\},\left\{\frac{1}{4},-\frac{1}{12},-\frac{1}{6}\right\},\left\{\frac{1}{8}, \frac{7}{24}, \frac{1}{12}\right\}\right\}$
and verifying that the matrix times its inverse is the identity matrix :
$\ln [138]:=$ matrixA.Inverse[matrixA]
Out[138]= $\{\{1,0,0\},\{0,1,0\},\{0,0,1\}\}$

You just use a standard period to indicate matrix multiplication.
III. "/."

The "slash dot" command is very useful in computing values in Mathematica. The expression :
$\ln [139]:=\operatorname{Sin}[\mathbf{n} \pi / 4] / . \mathbf{n} \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}\}$
Out[139] $=\left\{\frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}},-1,-\frac{1}{\sqrt{2}}, 0\right\}$
replaces n in $\operatorname{Sin}[n \pi / 4]$ by the values in the braces.

