
PHYS 301

HOMEWORK #10-- Solutions
1.  If your instinct is to grind away doing difficult integrals, this problem would be a great chal-
lenge.  If however, you thought a bit more about the nature of line integrals, you would have noticed
that the given function has a curl of zero.  Therefore, the value of the line integral is path indepen-
dent, and we can compute the line integral by choosing any path we wish. In particular, let' s choose
the path along the x axis from - 3 to 3.  Along this path, we have :


C

F ÿ dl = 
C
Fx dx + Fy dy

Along the x axis, y = dy = 0, so this integral reduces to :


C

F ÿ dl = 
-3

3

Fx dx = 
-3

3

ex cos y dx = e3 - e-3 = 2 sinh 3

remember that along the x axis y = 0 so cos y = 1.

2.  We write Laplace’s equation in spherical coordinates:

!2 V =
1

r2

∑

∑r
r2
∑V

∑r
+

1

r2 sin q

∑

∑q
sin q

∑V

∑q
+

1

r2 sin2 q

∑2 V

∑f2
= 0

Since our given scalar :

V = rn cos q

has no f dependence, we can set the last term on the right to zero, yielding :

1

r2

∑

∑r
r2
∑rn cos q

∑r
+

1

r2 sin q

∑

∑q
sin q

∑rn cosq
∑q

= 0

Recall that cos q is a constant with respect to r, and r is a constant with respect to q; doing the indi-
cated differentiations yields :

cos q

r2

∑

∑r
r2 n rn-1 + rn

r2 sin q

∑

∑q
-sin2 q = 0

Differentiating again :

n n+ 1 cos q rn-2 + rn-2 -2 cos q = 0

Factoring out common terms :

rn-2 cos qn n+ 1 - 2 = 0

Which yields the quadratic :

n2 + n- 2 = 0 fl n = 1, -2



3. y ''+ y = 0

We already know that this is the simplest representation of harmonic motion; the solutions to this
equation are sin and cos.  Let' s use this to hone our skills with series solutions.  Assume the trial
solution :

y = 
n=0

¶

an xn

and substitute this into the original differential equation :


n= 2

¶

n n- 1 an xn-2 + 
n= 0

¶

an xn = 0

In the first sum, set k = n - 2 :


n= 0

¶

n+ 2 n+ 1 an+2 xn + an xn = 0

This yields the recursion relation :

an+2 =
-an

n+ 2 n+ 1
Let' s notice a couple of things about this recursion relation.  First, we notice a minus sign on the
right, this tells us that terms will alternate in sign.  Next, notice that the (n + 2) th term is a multiple
of the nth term, indicating there will be an odd branch, and an even branch.  Now, let' s evaluate
coefficients :

a2 =
-a0

2 ÿ 1
=
-a0

2
a3 =

-a1

3 ÿ 2

a4 =
-a2

4 ÿ 3
=
--a0
4 ÿ 3 ÿ 2

=
a0

4!
a5 =

-a3

5 ÿ 4
=

--a1
5 ÿ 4 ÿ 3 ÿ 2

=
a1

5!

Our power series solution is :

y = a0 + a1 x+ a2 x2 + a3 x3 + a4 x4

Grouping terms gives us :

y = a0 1-
x2

2!
+

x4

4!
+ ... + a1 x-

x3

3!
+

x5

5!
- ...

and we recognize these series immediately as :

y = a0 cos x + a1 sin x

We cannot provide values for the coefficients unless we are given initial conditions.

4. y ''+ x y = 0

Using our standard trial solution and subsituting into the original differential equation yields :
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
n= 2

¶

n n- 1 an xn-2 + 
n= 0

¶

an xn+1 = 0

In the first sum, set k = n - 2, in the second sum set k = n + 1 and obtain :


n= 0

¶

n+ 2 n+ 1 an+2 xn + 
¶

n= 1

an-1 xn = 0

We have to "strip out" the first term from the first sum so that both summations have the same limits
:

2 a2 + 
n= 1

¶

n+ 2 n+ 1 an+2 + an-1 xn = 0

This tells us that :

a2 = 0

and 

an+2 =
-an-1

n+ 2 n+ 1
This recursion relation tells us that :

a3 =
-a0

3 ÿ 2
a6 =

-a3

6 ÿ 5
=

a0

6 ÿ 5 ÿ 3 ÿ 2

a4 =
-a1

4 ÿ 3
a7 =

-a4

7 ÿ 6
=

a1

7 ÿ 6 ÿ 4 ÿ 3

a5 =
-a2

5 ÿ 4
= 0 a8 =

-a5

8 ÿ 7
= 0

and our general solution is :

y = a0 1-
x3

6
+

x6

180
- ... + a1 x-

x4

12
+

x7

504
- ...

This differential equation is an example of the Airy equation, whose solution in closed form consists
of Airy functions (useful in the theory of optics and quantum mechanics).  Let' s see what Mathemat-
ica gives us if we try the DSolve feature :
DSolvey''x  x yx  0, yx, x
yx  AiryAi113 x C1  AiryBi113 x C2
Does this equate to the series solution we obtained above?  Let' s expand this solution as a series in
x :
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SeriesAiryAi113 x C1  AiryBi113 x C2, x, 0, 8
313 C1  356 C2

3 Gamma 2

3



113 323 C1  3  316 C2 x

3 Gamma 1

3




313 C1  356 C2 x3

18 Gamma 2

3



113 323 C1  3  316 C2 x4

36 Gamma 1

3




313 C1  356 C2 x6

540 Gamma 2

3



113 323 C1  3  316 C2 x7

1512 Gamma 1

3


 Ox9

There are lots of ugly constants, can we verify the two solutions are the same?  Notice that both
series expansions yield the same powers of x; that' s promising.  Now, if we take ratios of coeffi-
cients, we see that they are consistent.  In otherwords, notice that the ratio of the x7 term is 1/504 of
the x term, the ratio of the x6 term is 1/180 of the x0 term, and so on.  By comparing ratios of coeffi-
cients, we get to ignore their inherent ugliness and verify that our series solution matches the closed
form solution.

5. y ''- x2 y = 0

We know the routine by now, substitute our trial solution and get :


n= 2

¶

n n- 1 an xn-2 - 
n= 0

¶

an xn+2 = 0

Set k = n - 2 in the first sum, k = n + 2 in the second :


n= 0

¶

n+ 2 n+ 1 an+2 xn - 
n= 2

¶

an-2 xn = 0

Now, in order to produce two sums with the same limits, we "strip out" the n = 0 and n = 1 terms
from the first sum :

2 a2 + 6 a3 x + 
n= 2

¶

n+ 2 n+ 1 an+2 - an-2 xn = 0

Since all the terms on the right must equal all the terms on the left, we know that :

a2 = a3 = 0

an+2 =
an-2

n+ 2 n+ 1
Notice now there will not be alternating signs in the series expansion.  Using the recursion relation
we get :

a4 =
a0

4 ÿ 3
a8 =

a4

8 ÿ 7
=

a0

8 ÿ 7 ÿ 4 ÿ 3
=

a0

672

a5 =
a1

5 ÿ 4
a9 =

a5

9 ÿ 8
=

a1

1440

a2 = a4 n+2 = 0 a3 = a4 n+3 = 0

4   phys301-2015hw10s.nb



Our series solution is :

y = a0 1+
x4

12
+

x8

672
+ ... + a1 x+

x5

20
+

x9

1440
+ ...

Let' s see what Mathematica says :
DSolvey''x  x^2 yx  0, yx, x

yx  C2 ParabolicCylinderD 1

2
,  2 x  C1 ParabolicCylinderD 1

2
, 2 x

SeriesC2 ParabolicCylinderD 1

2
,  2 x  C1 ParabolicCylinderD 1

2
, 2 x, x, 0, 10

234  C1  234  C2
2 Gamma 3

4



234  C1   234  C2 x

Gamma 1

4




234  C1  234  C2 x4

24 Gamma 3

4



234  C1   234  C2 x5

20 Gamma 1

4




234  C1  234  C2 x8

1344 Gamma 3

4



234  C1   234  C2 x9

1440 Gamma 1

4


 Ox11

Ugly2.  But notice that the series expansion has the same powers as our solution, and if you again

take ratios of coefficients, you will see that the x9 term is 1/1440 of the x term; the x8term is 1/672
of the x0 term, and in fact, our two series match.
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