PHYS 301

HOMEWORK \#10-- Solutions

1. If your instinct is to grind away doing difficult integrals, this problem would be a great challenge. If however, you thought a bit more about the nature of line integrals, you would have noticed that the given function has a curl of zero. Therefore, the value of the line integral is path independent, and we can compute the line integral by choosing any path we wish. In particular, let' s choose the path along the x axis from -3 to 3 . Along this path, we have :

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l}=\int_{C}\left(\mathrm{~F}_{\mathrm{x}} \mathrm{dx}+\mathrm{F}_{\mathrm{y}} \mathrm{dy}\right)
$$

Along the x axis, $\mathrm{y}=\mathrm{dy}=0$, so this integral reduces to :

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l}=\int_{-3}^{3} \mathrm{~F}_{\mathrm{x}} \mathrm{dx}=\int_{-3}^{3} \mathrm{e}^{\mathrm{x}} \cos \mathrm{ydx}=\mathrm{e}^{3}-\mathrm{e}^{-3}=2 \sinh 3
$$

remember that along the x axis $\mathrm{y}=0$ so $\cos \mathrm{y}=1$.
2. We write Laplace's equation in spherical coordinates:

$$
\nabla^{2} \mathrm{~V}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \frac{\partial \mathrm{~V}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \mathrm{~V}}{\partial \theta}\right)+\frac{1}{\mathrm{r}^{2} \sin ^{2} \theta} \frac{\partial^{2} \mathrm{~V}}{\partial \phi^{2}}=0
$$

Since our given scalar :

$$
\mathrm{V}=\mathrm{r}^{\mathrm{n}} \cos \theta
$$

has no ϕ dependence, we can set the last term on the right to zero, yielding :

$$
\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \frac{\partial\left(\mathrm{r}^{\mathrm{n}} \cos \theta\right)}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial\left(\mathrm{r}^{\mathrm{n}} \cos \theta\right)}{\partial \theta}\right)=0
$$

Recall that $\cos \theta$ is a constant with respect to r , and r is a constant with respect to θ; doing the indicated differentiations yields :

$$
\frac{\cos \theta}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2}\left(\mathrm{n} \mathrm{r}^{\mathrm{n}-1}\right)\right)+\frac{\mathrm{r}^{\mathrm{n}}}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(-\sin ^{2} \theta\right)=0
$$

Differentiating again :

$$
\mathrm{n}(\mathrm{n}+1) \cos \theta \mathrm{r}^{\mathrm{n}-2}+\mathrm{r}^{\mathrm{n}-2}(-2 \cos \theta)=0
$$

Factoring out common terms :

$$
\mathrm{r}^{\mathrm{n}-2} \cos \theta[\mathrm{n}(\mathrm{n}+1)-2]=0
$$

Which yields the quadratic :

$$
\mathrm{n}^{2}+\mathrm{n}-2=0 \Rightarrow \mathrm{n}=1,-2
$$

3. $y "+y=0$

We already know that this is the simplest representation of harmonic motion; the solutions to this equation are sin and cos. Let' s use this to hone our skills with series solutions. Assume the trial solution :

$$
\mathrm{y}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}
$$

and substitute this into the original differential equation :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

In the first sum, set $\mathrm{k}=\mathrm{n}-2$:

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+a_{n} x^{n}=0
$$

This yields the recursion relation :

$$
a_{n+2}=\frac{-a_{n}}{(n+2)(n+1)}
$$

Let' s notice a couple of things about this recursion relation. First, we notice a minus sign on the right, this tells us that terms will alternate in sign. Next, notice that the $(\mathrm{n}+2)$ th term is a multiple of the nth term, indicating there will be an odd branch, and an even branch. Now, let' s evaluate coefficients :
$\mathrm{a}_{2}=\frac{-\mathrm{a}_{0}}{2 \cdot 1}=\frac{-\mathrm{a}_{0}}{2}$
$\mathrm{a}_{3}=\frac{-\mathrm{a}_{1}}{3 \cdot 2}$
$a_{4}=\frac{-a_{2}}{4 \cdot 3}=\frac{-\left(-a_{0}\right)}{4 \cdot 3 \cdot 2}=\frac{a_{0}}{4!}$
$a_{5}=\frac{-a_{3}}{5 \cdot 4}=\frac{-\left(-a_{1}\right)}{5 \cdot 4 \cdot 3 \cdot 2}=\frac{a_{1}}{5!}$
Our power series solution is :

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}
$$

Grouping terms gives us :

$$
y=a_{0}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots\right)+a_{1}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots\right)
$$

and we recognize these series immediately as :

$$
y=a_{0} \cos x+a_{1} \sin x
$$

We cannot provide values for the coefficients unless we are given initial conditions.
4. y " $+\mathrm{xy}=0$

Using our standard trial solution and subsituting into the original differential equation yields :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

In the first sum, set $\mathrm{k}=\mathrm{n}-2$, in the second sum set $\mathrm{k}=\mathrm{n}+1$ and obtain :

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=0
$$

We have to "strip out" the first term from the first sum so that both summations have the same limits :

$$
2 \mathrm{a}_{2}+\sum_{\mathrm{n}=1}^{\infty}\left[(\mathrm{n}+2)(\mathrm{n}+1) \mathrm{a}_{\mathrm{n}+2}+\mathrm{a}_{\mathrm{n}-1}\right] \mathrm{x}^{\mathrm{n}}=0
$$

This tells us that :

$$
\mathrm{a}_{2}=0
$$

and

$$
\mathrm{a}_{\mathrm{n}+2}=\frac{-\mathrm{a}_{\mathrm{n}-1}}{(\mathrm{n}+2)(\mathrm{n}+1)}
$$

This recursion relation tells us that :
$a_{3}=\frac{-a_{0}}{3 \cdot 2} \quad a_{6}=\frac{-a_{3}}{6 \cdot 5}=\frac{a_{0}}{6 \cdot 5 \cdot 3 \cdot 2}$
$a_{4}=\frac{-a_{1}}{4 \cdot 3} \quad a_{7}=\frac{-a_{4}}{7 \cdot 6}=\frac{a_{1}}{7 \cdot 6 \cdot 4 \cdot 3}$
$a_{5}=\frac{-a_{2}}{5 \cdot 4}=0 \quad a_{8}=\frac{-a_{5}}{8 \cdot 7}=0$
and our general solution is :

$$
y=a_{0}\left(1-\frac{x^{3}}{6}+\frac{x^{6}}{180}-\ldots\right)+a_{1}\left(x-\frac{x^{4}}{12}+\frac{x^{7}}{504}-\ldots\right)
$$

This differential equation is an example of the Airy equation, whose solution in closed form consists of Airy functions (useful in the theory of optics and quantum mechanics). Let' s see what Mathematica gives us if we try the DSolve feature:
DSolve[y' $\quad[\mathrm{x}]+\mathrm{x} y[\mathrm{x}]=\mathbf{0}, \mathrm{y}[\mathrm{x}], \mathrm{x}]$
$\left\{\left\{y[x] \rightarrow \operatorname{AiryAi}\left[(-1)^{1 / 3} x\right] C[1]+\operatorname{AiryBi}\left[(-1)^{1 / 3} x\right] C[2]\right\}\right\}$
Does this equate to the series solution we obtained above? Let' s expand this solution as a series in x :

$$
\begin{aligned}
& \text { Series }\left[\operatorname{AiryAi}\left[(-1)^{1 / 3} \mathrm{x}\right] \mathrm{C}[1]+\operatorname{AiryBi}\left[(-1)^{1 / 3} \mathrm{x}\right] \mathrm{C}[2],\{x, 0,8\}\right] \\
& \frac{3^{1 / 3} \mathrm{C}[1]+3^{5 / 6} \mathrm{C}[2]}{3 \operatorname{Gamma}\left[\frac{2}{3}\right]}-\frac{\left((-1)^{1 / 3}\left(3^{2 / 3} \mathrm{C}[1]-3 \times 3^{1 / 6} \mathrm{C}[2]\right)\right) \mathrm{x}}{3 \text { Gamma }\left[\frac{1}{3}\right]}+ \\
& \frac{\left(-3^{1 / 3} C[1]-3^{5 / 6} C[2]\right) x^{3}}{18 \operatorname{Gamma}\left[\frac{2}{3}\right]}+\frac{(-1)^{1 / 3}\left(3^{2 / 3} C[1]-3 \times 3^{1 / 6} C[2]\right) x^{4}}{36 \operatorname{Gamma}\left[\frac{1}{3}\right]}+ \\
& \frac{\left(3^{1 / 3} C[1]+3^{5 / 6} C[2]\right) x^{6}}{540 \operatorname{Gamma}\left[\frac{2}{3}\right]}-\frac{\left((-1)^{1 / 3}\left(3^{2 / 3} C[1]-3 \times 3^{1 / 6} C[2]\right)\right) x^{7}}{1512 \operatorname{Gamma}\left[\frac{1}{3}\right]}+0[\mathrm{X}]^{9}
\end{aligned}
$$

There are lots of ugly constants, can we verify the two solutions are the same? Notice that both series expansions yield the same powers of x; that' s promising. Now, if we take ratios of coefficients, we see that they are consistent. In otherwords, notice that the ratio of the x^{7} term is $1 / 504$ of the x term, the ratio of the x^{6} term is $1 / 180$ of the x^{0} term, and so on. By comparing ratios of coefficients, we get to ignore their inherent ugliness and verify that our series solution matches the closed form solution.
5. $y "-x^{2} y=0$

We know the routine by now, substitute our trial solution and get :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+2}=0
$$

Set $\mathrm{k}=\mathrm{n}-2$ in the first sum, $\mathrm{k}=\mathrm{n}+2$ in the second :

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} a_{n-2} x^{n}=0
$$

Now, in order to produce two sums with the same limits, we "strip out" the $\mathrm{n}=0$ and $\mathrm{n}=1$ terms from the first sum :

$$
2 a_{2}+6 a_{3} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n-2}\right] x^{n}=0
$$

Since all the terms on the right must equal all the terms on the left, we know that :
$\mathrm{a}_{2}=\mathrm{a}_{3}=0$
$\mathrm{a}_{\mathrm{n}+2}=\frac{\mathrm{a}_{\mathrm{n}-2}}{(\mathrm{n}+2)(\mathrm{n}+1)}$
Notice now there will not be alternating signs in the series expansion. Using the recursion relation we get :
$\mathrm{a}_{4}=\frac{\mathrm{a}_{0}}{4 \cdot 3} \quad \mathrm{a}_{8}=\frac{\mathrm{a}_{4}}{8 \cdot 7}=\frac{\mathrm{a}_{0}}{8 \cdot 7 \cdot 4 \cdot 3}=\frac{\mathrm{a}_{0}}{672}$
$\mathrm{a}_{5}=\frac{\mathrm{a}_{1}}{5 \cdot 4} \quad \mathrm{a}_{9}=\frac{\mathrm{a}_{5}}{9 \cdot 8}=\frac{\mathrm{a}_{1}}{1440}$
$\mathrm{a}_{2}=\mathrm{a}_{4 \mathrm{n}+2}=0 \quad \mathrm{a}_{3}=\mathrm{a}_{4 \mathrm{n}+3}=0$

Our series solution is :

$$
y=a_{0}\left(1+\frac{x^{4}}{12}+\frac{x^{8}}{672}+\ldots\right)+a_{1}\left(x+\frac{x^{5}}{20}+\frac{x^{9}}{1440}+\ldots\right)
$$

Let' s see what Mathematica says :

$$
\begin{aligned}
& \text { DSolve [y' } \left.{ }^{\prime}[x]-x^{\wedge} 2 y[x]==0, y[x], x\right] \\
& \left\{\left\{y[x] \rightarrow C[2] \text { ParabolicCylinderD}\left[-\frac{1}{2}, \text { ii } \sqrt{2} x\right]+C[1] \text { ParabolicCylinderD}\left[-\frac{1}{2}, \sqrt{2} x\right]\right\}\right\} \\
& \text { Series }\left[C[2] \text { ParabolicCylinderD}\left[-\frac{1}{2}, \text { i } \sqrt{2} x\right]+C[1] \operatorname{ParabolicCylinderD}\left[-\frac{1}{2}, \sqrt{2} x\right],\{x, 0,10\}\right] \\
& \frac{2^{3 / 4} \sqrt{\pi} C[1]+2^{3 / 4} \sqrt{\pi} C[2]}{2 \operatorname{Gamma}\left[\frac{3}{4}\right]}+\frac{\left(-2^{3 / 4} \sqrt{\pi} C[1]-\text { i } 2^{3 / 4} \sqrt{\pi} C[2]\right) x}{\operatorname{Gamma}\left[\frac{1}{4}\right]}+ \\
& \frac{\left(2^{3 / 4} \sqrt{\pi} C[1]+2^{3 / 4} \sqrt{\pi} C[2]\right) x^{4}}{24 \operatorname{Gamma}\left[\frac{3}{4}\right]}+\frac{\left(-2^{3 / 4} \sqrt{\pi} C[1]-i 2^{3 / 4} \sqrt{\pi} C[2]\right) x^{5}}{20 \operatorname{Gamma}\left[\frac{1}{4}\right]}+ \\
& \frac{\left(2^{3 / 4} \sqrt{\pi} C[1]+2^{3 / 4} \sqrt{\pi} C[2]\right) x^{8}}{1344 \operatorname{Gamma}\left[\frac{3}{4}\right]}+\frac{\left(-2^{3 / 4} \sqrt{\pi} C[1]-\text { ii } 2^{3 / 4} \sqrt{\pi} C[2]\right) x^{9}}{1440 \operatorname{Gamma}\left[\frac{1}{4}\right]}+0[x]^{11}
\end{aligned}
$$

Ugly ${ }^{2}$. But notice that the series expansion has the same powers as our solution, and if you again take ratios of coefficients, you will see that the x^{9} term is $1 / 1440$ of the x term; the x^{8} term is $1 / 672$ of the x^{0} term, and in fact, our two series match.

