
PHYS 301

HOMEWORK #12
Solutions

1.  Bessel functions of the first kind, denoted as Jn(x)  are solutions to Bessel’s differential equation,
and appear in many contexts including electromagnetic theory and diffraction theory.  The generat-
ing function for these functions is: 
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Use this generating function to establish these two recursion relations :

a Jn-1 x + Jn+1 x = 2 n
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Solution :  We differentiate both sides of equation (1) with respect to t :
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Performing the partial derivatives :

e
x

2
t- 1

t
 ÿ

x

2
ÿ 1+

1

t2
= 

-¶

¶

n Jn x tn-1

(the limits of the summation don' t change since they are infinite).  We recognize the exponential
term as the generating function and rewrite the left hand side as :
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Multiplying the LHS :
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Now, if we want to equate, say,  the t3terms on both sides of the equation, we can set n =3 in the
first equation, set n=5 in the second sum, and n=4 in the summation on the right.  Multiply through
by 2/x and we get for this term:
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If now we re - index and set n = 4, divide by t4 we get :
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b Jn-1 x - Jn+1 x = 2 J'
n x

where J'
n x = d Jn x
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Solution :  For this problem, we differentiate with respect to x :
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Substituting on the left:
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Distribute terms on the left :
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If we multiply through by 2 and equate powers of t on both sides of the equation, we obtain :

Jn-1 - Jn+1 = 2 Jn '

c) Use the Mathematica BesselJ function to find expressions for  for J12(x)  and J-12(x).  Then use

the appropriate recursion relation to find an expression for J32(x) and compare your answer with the

Mathematica expression.

Solution:  We will use the identity in part a), and recognize that if n=1/2, we can write:
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Using Mathematica to find Bessel functions, we get :
BesselJ1  2, x, BesselJ1  2, x
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Using equation (2), we obtain :
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Compare with the Mathematica result :
BesselJ3  2, x
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and the results match.

2.  Find Legendre series for the following, writing out the first three non zero terms for each.  You
may leave your answers in terms of Legendre polynomials. (10 pts each part)

a f x = ¶ x, -1 < x < 0
0, 0 < x < 1

Solution :  We expand the function as a Legendre series according to :

f x = c0 P0 + c1 P1 + c2 P2 + ...

where the coefficients are found from :
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since this function is zero on (0, 1), our integrals become :
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so that the Legendre polynomial is :
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b f x = 3 x2 + x- 1

Finding the coefficients as before :
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and the Legendre series is :
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3.  p. 626 no. 1

This problem is very similar to the example in the book (and the problem we are doing in class).
We are solving Laplace' s equation in Cartesian coordinates on a semi - infinite plane, so we know
our solution will be :

T x, y = A cos kx + B sin kx C ek y +D e-k y
Since T must be finite as y grows large, we know C = 0.  Since T = 0 when x = 0, we can conclude
A = 0.  The boundary condition that T = 0 at x = 10 requires that k = n p/10.  We can combine all
these results and write our solution as :

T x, y = B sin n p x  10 e-n p y10

We can see at this point that there is no single value of n that will satisfy this equation, but a sum of
solutions will satisfy the equation, or
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  If we apply the lower boundary condition, namely that T (x, 0) = x, we get when we set y = 0 :

(4)T x, 0 = x = 
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The only remaining unknown is the set of Bn coefficients, but we realize that equation (4) simply the
Fourier sine series for the odd function :

f x = x, -10 < x < 10

Finding the set of Bn  coefficients will lead to a complete solution.  We know that the Fourier sine
coefficients for an odd function are given by :
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for L = 10 and f (x) = x, we have :
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Substituting these coefficients into the solution, eq. (3) :
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