PHYS 301
 HOMEWORK \#3

Solutions

1. The function :

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ x, & 0<x<\pi\end{cases}
$$

has the Fourier series :

$$
\mathrm{f}(\mathrm{x})=\frac{\pi}{4}-\frac{2}{\pi}\left[\cos \mathrm{x}+\frac{\cos 3 \mathrm{x}}{9}+\frac{\cos 5 \mathrm{x}}{25}+\ldots\right]+\left[\sin \mathrm{x}-\frac{\sin 2 \mathrm{x}}{2}+\frac{\sin 3 \mathrm{x}}{3}-. .\right]
$$

We are asked to use Dirichlet' s Theorem to derive expressions for π using the values of f at $\mathrm{x}=0$, x $=\pi / 2$ and $\mathrm{x}=\pi$. Remember that Dirichlet' s theorem states that if a function can be expressed as a Fourier series, then the Fourier series converges to the value of f where f is continuous, and to the midpoint of a discontinuity. For this 2π periodic function (I have plotted three cycles of this function) :

we see that f is continuous at $x=0$ and $x=\pi / 2$, but is discontinuous at $x=\pi$. Since $f(0)=0$, we have :

$$
\mathrm{f}(0)=0=\frac{\pi}{4}-\frac{2}{\pi}\left[\cos 0+\frac{\cos 0}{9}+\frac{\cos 0}{25}+\ldots\right]+\left[\sin 0-\frac{\sin 0}{2}+\frac{\sin 0}{3}-\ldots\right]
$$

Since $\cos 0=1$ and $\sin 0=0$, we obtain :

$$
0=\frac{\pi}{4}-\frac{2}{\pi}\left[1+\frac{1}{9}+\frac{1}{25}+\ldots\right] \Rightarrow \frac{\pi^{2}}{8}=\sum_{n \text { odd }}^{\infty} \frac{1}{n^{2}}
$$

Let' s check this with Mathematica :
$\operatorname{Sum}\left[1 / n^{2},\{n, 1, \infty, 2\}\right]$
$\frac{\pi^{2}}{8}$
Now, at $\mathrm{x}=\pi / 2, \mathrm{f}(\mathrm{x})=\pi / 2$ and the series converges to this value, so :

$$
\begin{gathered}
\mathrm{f}\left(\frac{\pi}{2}\right)=\frac{\pi}{2}=\frac{\pi}{4}- \\
\frac{2}{\pi}\left[\cos \frac{\pi}{2}+\frac{\cos (3 \pi / 2)}{9}+\frac{\cos (5 \pi / 2)}{25}+\ldots\right]+\left[\sin \pi / 2-\frac{\sin (\pi)}{2}+\frac{\sin (3 \pi / 2)}{3}+\ldots\right]
\end{gathered}
$$

In this case, all the cos terms are zero since \cos of $\pi / 2,3 \pi / 2,5 \pi / 2$, etc is zero. The sin terms vanish for even values of n, and the sign of the odd terms alternate, so we have :

$$
\frac{\pi}{2}=\frac{\pi}{4}+\left[1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right] \Rightarrow \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

Verifying through Mathematica :

```
Sum[-(-1)n Sin[n \pi/2]/n,{n,1,\infty,2}]
```

$\frac{\pi}{4}$
Finally, at $\mathrm{x}=\pi$ we have to realize that there is a discontinuity whose midpoint is $\pi / 2$, therefore, we have :

$$
\mathrm{f}(\pi)=\frac{\pi}{2}=\frac{\pi}{4}-\frac{2}{\pi}\left[\cos \pi+\frac{\cos 3 \pi}{9}+\frac{\cos 5 \pi}{25}+\ldots\right]+[\text { a series of } \sin (\mathrm{n} \pi) \text { terms }]
$$

we know the $\sin (n \pi)$ terms are all zero, and that $\cos (n \pi)=-1$ for all odd values of n, so Dirichlet' s theorem gives us :

$$
\frac{\pi}{2}=\frac{\pi}{4}-\frac{2}{\pi}\left[-1-\frac{1}{3}-\frac{1}{5}-\ldots\right] \Rightarrow \frac{\pi^{2}}{8}=\sum_{\text {odd } n}^{\infty} \frac{1}{\mathrm{n}^{2}}
$$

as we found in part a).
2. We are asked to find two Fourier series. In both cases, the function is 2 L periodic on the given interval. Since the function is 2 L periodic, we do not need to extend the function (as we will in problems from section 9). We are asked to find the Fourier series for $f(x)=1+x$ on $(0,4)$ and then on ($-2,2$). In both cases, the interval is 4 , so $2 \mathrm{~L}=4$ and $\mathrm{L}=2$. To find the Fourier coefficients (and then the series) on (0,4), we write :
$a 0=\frac{1}{2}$ Integrate $[1+x,\{x, 0,4\}]$
6
Since the interval is (0, 4), we cannot make use of symmetry arguments. For the other coefficients we have :

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{2} \int_{0}^{4}(1+\mathrm{x}) \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=0
$$

$$
\mathrm{b}_{\mathrm{n}}=\frac{1}{2} \int_{0}^{4}(1+\mathrm{x}) \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\frac{-4}{\mathrm{n} \pi}
$$

so that the Fourier expansion becomes :

$$
\mathrm{f}(\mathrm{x})=3-\frac{4}{\pi}\left[\sin (\pi \mathrm{x} / 2)+\frac{\sin (\pi \mathrm{x})}{2}+\frac{\sin (3 \pi \mathrm{x} / 2)}{3}+\ldots\right]
$$

And plotting this series over three cycles :

For part b), our value of $L=2$ still, but our limits of integration are between ($-2,2$), so we obtain :

$$
\begin{gathered}
a 0=\frac{1}{2} \int_{-2}^{2}(1+x) d x=2 \\
a_{n}=\frac{1}{2} \int_{-2}^{2}(1+x) \cos (n \pi x / 2) d x
\end{gathered}
$$

Even though $\mathrm{f}(\mathrm{x})$ is neither even nor odd, we can break the function into an even piece (here, simply 1) and an odd piece (x . We know the integral of $\mathrm{x} \cos (\mathrm{n} \pi \mathrm{x} / 2)$ will be zero on $(-2,2)$ since the integrand is odd. Therefore, the only non - zero part of this integral is :

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{2} \int_{-2}^{2} 1 \cdot \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\frac{2}{2} \int_{0}^{2} \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\left.\frac{2}{\mathrm{n} \pi} \sin (\mathrm{n} \pi \mathrm{x} / 2)\right|_{0} ^{2}=0
$$

Computing the b coefficients (and employing symmetry to simplify the integral) :

$$
\mathrm{b}_{\mathrm{n}}=\frac{1}{2} \int_{-2}^{2}(1+\mathrm{x}) \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\frac{2}{2} \int_{0}^{2} \mathrm{x} \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\frac{-4(-1)^{\mathrm{n}}}{\mathrm{n} \pi}
$$

Our Fourier series is :

$$
\mathrm{f}(\mathrm{x})=1+\frac{4}{\pi}\left[\sin (\pi \mathrm{x} / 2)-\frac{\sin (\pi \mathrm{x})}{2}+\frac{\sin (3 \pi \mathrm{x} / 2)}{3}-\ldots\right]
$$

Plotting three cycles :

```
\(\operatorname{Plot}\left[1-(4 / \pi) \operatorname{Sum}\left[(-1)^{n} \operatorname{Sin}[n \pi x / 2] / n,\{n, 1,21\}\right],\{x,-6,6\}\right]\)
```


3. Find the Fourier series for $f(x)=x$
a) on $(-\pi, \pi)$:

We can make use of symmetry here since the function is odd. Therefore,

$$
\begin{gathered}
a_{0}=a_{n}=0 \\
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x=-2(-1)^{n} / n
\end{gathered}
$$

And our series is :

$$
\mathrm{f}(\mathrm{x})=2\left[\sin \mathrm{x}-\frac{\sin (2 \mathrm{x})}{2}+\frac{\sin (3 \mathrm{x})}{3}+\ldots\right]
$$

Plotting three cycles :

b) on $(-3,3)$ We can still use symmetry, but must remember to use the proper form of the Fourier coefficients and series :
Because of the odd symmetry of the function, all the a coefficients are zero, and :

$$
\mathrm{b}_{\mathrm{n}}=\frac{2}{3} \int_{0}^{3} \mathrm{x} \sin (\mathrm{n} \pi \mathrm{x} / 3) \mathrm{dx}=\frac{-6(-1)^{\mathrm{n}}}{\mathrm{n} \pi}
$$

The Fourier series is :

$$
\mathrm{f}(\mathrm{x})=\frac{6}{\pi}\left[\sin (\pi \mathrm{x} / 3)-\frac{\sin (2 \pi \mathrm{x} / 3)}{2}+\frac{\sin (3 \pi \mathrm{x} / 3)}{3}+\ldots\right]
$$

Plotting three cycles :

4. $\mathrm{f}(\mathrm{x})= \begin{cases}-1, & -1<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<3\end{cases}$

This function is 2 L periodic on $(-1,3)$. This means that $\mathrm{L}=2$. To find our Fourier coefficients, we compute :

$$
\begin{aligned}
\mathrm{a} 0 & =\frac{1}{2} \int_{-1}^{3} f(\mathrm{x}) \mathrm{dx}=\frac{1}{2}\left[\int_{0}^{3} \mathrm{dx}+\int_{-1}^{0}(-1) \mathrm{dx}\right]=1 \\
\mathrm{a}_{\mathrm{n}} & =\frac{1}{2} \int_{-1}^{3} \mathrm{f}(\mathrm{x}) \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}=\frac{1}{2}\left[\int_{0}^{3} \cos (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}+\int_{-1}^{0}(-1) \cos (\mathrm{n} \pi \mathrm{x} / 2)\right] \\
= & \frac{1}{\mathrm{n} \pi}(\sin (3 \mathrm{n} \pi / 2)-\sin (\mathrm{n} \pi / 2))= \begin{cases}0, & \mathrm{n} \text { even } \\
\frac{-2}{\mathrm{n} \pi}, & \mathrm{n}=1,5,9, \ldots \\
\frac{2}{\mathrm{n} \pi}, & \mathrm{n}=3,7,11, \ldots\end{cases} \\
\mathrm{b}_{\mathrm{n}} & =\frac{1}{2}\left[\int_{0}^{3} \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}+\int_{-1}^{0}(-1) \sin (\mathrm{n} \pi \mathrm{x} / 2) \mathrm{dx}\right] \\
& =\frac{1}{2}\left[\left.\frac{-2}{\mathrm{n} \pi} \cos (\mathrm{n} \pi \mathrm{x} / 2)\right|_{0} ^{3}+\left.\frac{2}{\mathrm{n} \pi} \cos (\mathrm{n} \pi \mathrm{x} / 2)\right|_{-1} ^{0}\right] \\
& =\frac{1}{\mathrm{n} \pi}[-(\cos (3 \mathrm{n} \pi / 2)-1)+(1-\cos (\mathrm{n} \pi / 2))] \\
& =\frac{1}{\mathrm{n} \pi}[2-\cos (3 \mathrm{n} \pi / 2)-\cos (\mathrm{n} \pi / 2)]= \begin{cases}\frac{2}{\mathrm{n} \pi}, & \mathrm{n} \text { odd } \\
\frac{4}{\mathrm{n} \pi}, & \mathrm{n}=2,6,10, \ldots \\
0, & \mathrm{n}=4,8,12, \ldots\end{cases}
\end{aligned}
$$

The Fourier series is :

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{1}{2}-\frac{2}{\pi}\left[\cos (\pi \mathrm{x} / 2)-\frac{\cos (3 \pi \mathrm{x} / 2)}{3}+\frac{\cos (5 \pi \mathrm{x} / 2)}{5}-\ldots\right]+ \\
& \quad \frac{2}{\pi}\left[\sin (\pi \mathrm{x} / 2)+\frac{2 \sin (2 \pi \mathrm{x} / 2)}{2}+\frac{\sin (3 \pi \mathrm{x} / 2)}{3}+\frac{\sin (5 \pi \mathrm{x} / 2)}{5}+2 \frac{\sin (6 \pi \mathrm{x} / 2)}{6}+\ldots\right]
\end{aligned}
$$

5. Plot the Fourier series from problem 4 :

In[42] $=\operatorname{Plot}\left[\frac{1}{2}+(1 / \pi) \operatorname{Sum}[(\operatorname{Sin}[3 n \pi / 2]-\operatorname{Sin}[n \pi / 2]) \operatorname{Cos}[n \pi x / 2] / n+\right.$

$$
(2-\operatorname{Cos}[3 n \pi / 2]-\operatorname{Cos}[n \pi / 2]) \sin [n \pi x / 2] / n,\{n, 1,31\}],\{x,-5,9\}]
$$

6. Every three months, the existing amount of money receives 1% interest; after the interest is applied, you deposit $\$ 100$.

```
(* Do Loop *)
Clear[money, interest,deposit]
money=1000.0;deposit=100;
interest=0.01;
Do[money=(1+interest) money+deposit,{n,40}]
Print["At the end of ten years you will have $",money," in the bank"]
At the end of ten year you will have $6377.5 in the bank
```

Each value of n represents a three month period; in 10 years there are 120 months and so 40 accumulation periods.
nn[109]:= (* For statement *)
Clear [money, interest, deposit]
deposit=100;interest=0.01;
For [money=1000; $\mathrm{n}=1, \mathrm{n}<41, \mathrm{n}++$, money= ($1+$ interest) money+deposit]
Print["At the end of ten years you will have \$", money," in the bank"]
At the end of ten years you will have $\$ 6377.5$ in the bank

```
ln[113]:= (* While statement *)
Clear[money,interest,deposit]
money=1000; deposit=100;interest=0.01;n=1;
While[n<41,money=(1+interest)money +deposit;n++]
Print["At the end of ten years you will have $",money," in the bank"]
At the end of ten years you will have $6377.5 in the bank
```

