PHYS 301
 HOMEWORK \#5-- Solutions

1. For the first part of the question, we repeatedly contract Kronecker deltas :

$$
\delta_{\mathrm{ij}} \delta_{\mathrm{jk}} \delta_{\mathrm{km}} \delta_{\mathrm{im}}=\delta_{\mathrm{ik}} \delta_{\mathrm{km}} \delta_{\mathrm{im}}=\delta_{\mathrm{im}} \delta_{\mathrm{im}}=\delta_{\mathrm{im}} \delta_{\mathrm{mi}}=\delta_{\mathrm{mm}}=3
$$

For the second, we recognize that we have three repeated indices, i, j, and k, so we are summing over all three indices. Further, we recall that the Levi - Civita permutation tensor is zero unless all three indices are different. Thus, we can write our expression as :

$$
\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{ijk}}=\epsilon_{111} \epsilon_{111}+\epsilon_{112} \epsilon_{112}+\epsilon_{113} \epsilon_{113}+\ldots
$$

and if we were to write out every term explicitly, we would have 27 terms on the right. However, we know that only six terms will be non - zero :

$$
\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{ijk}}==\epsilon_{123} \epsilon_{123}+\epsilon_{132} \epsilon_{132}+\epsilon_{213} \epsilon_{213}+\epsilon_{231} \epsilon_{231}+\epsilon_{312} \epsilon_{312}+\epsilon_{321} \epsilon_{321}
$$

Each product on the right is either (1) (1) or (-1) (-1), so that the sum of all the terms is 6 .
We can also make use of the $\epsilon-\delta$ relationship. Expanding with respect to the subscript i :

$$
\epsilon_{\mathrm{ijk}} \epsilon_{\mathrm{ijk}}=\delta_{\mathrm{jj}} \delta_{\mathrm{kk}}-\delta_{\mathrm{jk}} \delta_{\mathrm{kj}}=3 \cdot 3-\delta_{\mathrm{jj}}=3 \cdot 3-3=6
$$

2. We translate our identity into Einstein summation notation :

$$
\nabla \cdot(\mathrm{f} \mathbf{g})=\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\mathrm{f} \mathrm{gi}_{\mathrm{i}}\right)
$$

Remember, f is a scalar and has no components (so will not have any subscripts). Applying the product rule to this expression :

$$
\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\mathrm{f} \mathrm{~g}_{\mathrm{i}}\right)=\mathrm{f} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~g}_{\mathrm{i}}+\mathrm{g}_{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{f}
$$

The first term on the right is the scalar f multiplied by the dot product between the del operator and g , or in other words : $\mathrm{f} \nabla \cdot \mathrm{g}$
The second term is the dot product of g with ∇f, so our identity is :

$$
\nabla \cdot(\mathrm{f} \mathbf{g})=\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\mathrm{f}_{\mathrm{i}}\right)=\mathrm{f} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~g}_{\mathrm{i}}+\mathrm{g}_{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{f}=\mathrm{f} \nabla \cdot \mathbf{g}+\mathbf{g} \cdot \nabla \mathrm{f}
$$

3. Using the identity from problem 2, we have :

$$
\begin{equation*}
\nabla \cdot\left(\mathrm{r}^{3} \mathbf{r}\right)=\mathrm{r}^{3} \nabla \cdot \mathbf{r}+\mathbf{r} \cdot\left(\nabla \mathrm{r}^{3}\right) \tag{1}
\end{equation*}
$$

The divergence of \mathbf{r} is simply :

$$
\nabla \cdot \mathbf{r}=\frac{\partial}{\partial \mathrm{x}} \mathrm{x}+\frac{\partial}{\partial \mathrm{y}} \mathrm{y}+\frac{\partial}{\partial \mathrm{z}} \mathrm{z}=3
$$

To find the gradient of the scalar r^{3}, we first write :

$$
\mathrm{r}=|\mathbf{r}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}
$$

so that

$$
r^{3}=\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}
$$

and :

$$
\begin{gathered}
\nabla r^{3}=\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} \hat{\mathbf{x}}+\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} \hat{\mathbf{y}}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{3 / 2} \hat{\mathbf{z}} \\
=\frac{3}{2}(2 \mathrm{x}) \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \hat{\mathbf{x}}+\frac{3}{2}(2 \mathrm{y}) \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \hat{\mathbf{y}}+\frac{3}{2}(2 \mathrm{z}) \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \hat{\mathbf{z}} \\
=3\left(\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}\right)(\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}})=3 \mathrm{r} \mathbf{r}
\end{gathered}
$$

Substituting these results into the original equation (1) :

$$
\nabla \cdot\left(r^{3} r\right)=3 r^{3}+\mathbf{r} \cdot(3 \mathrm{r} \mathbf{r})=3 r^{3}+3 r r^{2}=6 r^{3}
$$

4. Consider :

$\mathbf{A} \cdot(\mathbf{B} \times \mathbf{A})$

We know that $\mathbf{B} \times \mathbf{A}$ will produce a vector perpendicular to both \mathbf{A} and \mathbf{B}. Therefore, we expect a vanishing dot product for a vector \mathbf{A} and a vector perpendicular to \mathbf{A}. Let' s see if we can reproduce this result using summation notation. First, transform the expression to summation notation :

$$
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{A}) \rightarrow \mathrm{A}_{\mathrm{i}}\left(\epsilon_{\mathrm{ijk}} \mathrm{~B}_{\mathrm{j}} \mathrm{~A}_{\mathrm{k}}\right)=\mathrm{B}_{\mathrm{j}} \epsilon_{\mathrm{ijk}} \mathrm{~A}_{\mathrm{k}} \mathrm{~A}_{\mathrm{i}} \rightarrow \mathbf{B} \cdot(\mathbf{A} \times \mathbf{A})
$$

At this point, you can successfully argue that any vector crossed with itself is zero since the angle between them is zero.

