PHYS 301
 HOMEWORK \#6 -- Solutions

1. $\nabla \cdot(\mathbf{A} \times \mathbf{B}) \rightarrow \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\epsilon_{\mathrm{ijk}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}}\right)$

The term in parentheses produces the $i^{\text {th }}$ component of $\mathbf{A} \times \mathbf{B}$; the repeated index of " i " indicates we are taking the dot product of the del operator and the cross product. Now :

$$
\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\epsilon_{\mathrm{ijk}} \mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}\right)=\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}\right)=\epsilon_{\mathrm{ijk}}\left(\mathrm{~A}_{\mathrm{j}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~B}_{\mathrm{k}}+\mathrm{B}_{\mathrm{k}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~A}_{\mathrm{j}}\right) \quad \text { (via product rule) }
$$

we distribute the ϵ :

$$
=\epsilon_{\mathrm{ijk}} \mathrm{~A}_{\mathrm{j}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~B}_{\mathrm{k}}+\epsilon_{\mathrm{ijk}} \mathrm{~B}_{\mathrm{k}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~A}_{\mathrm{j}}=\mathrm{A}_{\mathrm{j}} \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~B}_{\mathrm{k}}+\epsilon_{\mathrm{ijk}} \mathrm{~B}_{\mathrm{k}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{~A}_{\mathrm{j}}
$$

The first ϵ term on the right is the $-j^{\text {th }}$ component of $\nabla \times \mathbf{B}$, and the second ϵ is the +kth component of $\boldsymbol{\nabla} \times \mathbf{A}$. Thus we have :

$$
=-\mathrm{A}_{\mathrm{j}}(\nabla \times \mathrm{B})_{\mathrm{j}}+\mathrm{B}_{\mathrm{k}}(\nabla \times \mathrm{A})_{\mathrm{k}}
$$

summing over all components provides the final step in the proof :

$$
=-\mathbf{A} \cdot(\nabla \times \mathbf{B})+\mathbf{B} \cdot(\nabla \times \mathbf{A})
$$

2. $\nabla \times(\mathbf{A} \times \mathbf{B}) \rightarrow \epsilon_{\mathrm{mni}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \epsilon_{\mathrm{ijk}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}}=\epsilon_{\mathrm{imn}} \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}}$
(after permuting indices in ϵ_{mni} term)
then, apply $\epsilon-\delta$ relationship :

$$
\epsilon_{\mathrm{imn}} \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}=\delta_{\mathrm{mj}} \delta_{\mathrm{nk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}-\delta_{\mathrm{mk}} \delta_{\mathrm{nj}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{j}} \mathrm{~B}_{\mathrm{k}}
$$

In the first term, $\mathrm{j}=\mathrm{m}$ and $\mathrm{k}=\mathrm{n}$; in the second term $\mathrm{k}=\mathrm{m}$ and $\mathrm{j}=\mathrm{n}$ leaving us with :

$$
=\frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{m}} \mathrm{~B}_{\mathrm{n}}-\frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{n}} \mathrm{~B}_{\mathrm{m}}
$$

Apply product rule to both partial derivatives :

$$
=\mathrm{A}_{\mathrm{m}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~B}_{\mathrm{n}}+\mathrm{B}_{\mathrm{n}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{m}}-\mathrm{A}_{\mathrm{n}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~B}_{\mathrm{m}}-\mathrm{B}_{\mathrm{m}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}} \mathrm{~A}_{\mathrm{n}}
$$

Recognizing that the product of terms with a repeated index indicates a dot product, we have :

$$
=\mathbf{A}(\nabla \cdot \mathbf{B})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}-\mathbf{B}(\nabla \cdot \mathbf{A})
$$

3. $\nabla \times(\mathrm{f} \mathbf{A}) \rightarrow \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\mathrm{f} \mathrm{A}_{\mathrm{k}}\right)=\epsilon_{\mathrm{ijk}} \mathrm{f} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{A}_{\mathrm{k}}+\epsilon_{\mathrm{ijk}} \mathrm{A}_{\mathrm{k}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{f}=\mathrm{f} \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{A}_{\mathrm{k}}+\epsilon_{\mathrm{ijk}} \mathrm{A}_{\mathrm{k}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{f}$

The first term all the way on the right is simply f times the $+i^{\text {th }}$ component of curl \mathbf{A}. The second term is the $-i^{\text {th }}$ component of $\mathbf{A} \times$ grad f. Summing over all components gives us :

$$
\nabla \times(\mathrm{f} \mathbf{A})=\mathrm{f}(\nabla \times \mathbf{A})-\mathbf{A} \times(\nabla \mathrm{f})
$$

4. Show $\nabla \times(\nabla \phi)=0$

To show this, you must recall that you can interchange the order of differentiation in multivariable calculus, in other words :

$$
\frac{\partial}{\partial \mathrm{x}}\left(\frac{\partial}{\partial \mathrm{y}} \mathrm{f}\right)=\frac{\partial}{\partial \mathrm{y}}\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{f}\right)
$$

If you compute this curl by hand, you should find that that the \hat{x} component of the curl is the term :

$$
\frac{\partial}{\partial \mathrm{y}}\left(\frac{\partial}{\partial \mathrm{z}} \phi\right)-\frac{\partial}{\partial \mathrm{z}}\left(\frac{\partial}{\partial \mathrm{y}} \phi\right)=0
$$

(A vector is zero iff all its components are zero, so we should expect to obtain similar terms for the \hat{y} and \hat{z} components.)
Now, using Einstein summation notation :

$$
\nabla \times(\nabla \phi) \rightarrow \epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}} \mathrm{f}\right)
$$

Since the order of differentiation is interchangeable, we can write :

$$
\begin{equation*}
\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}} \mathrm{f}\right)=\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{f}\right) \tag{1}
\end{equation*}
$$

But the subscripts on the right are reversed, so we know that introduces a negative sign :

$$
\begin{equation*}
\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{f}\right)=-\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}} \mathrm{f}\right) \tag{2}
\end{equation*}
$$

Equating eqs. (1) and (2) shows :

$$
\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}} \mathrm{f}\right)=-\epsilon_{\mathrm{ijk}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}} \mathrm{f}\right)
$$

If an expression equals its negative, the expression must be zero.
5. $\nabla(\phi \psi) \rightarrow \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}(\phi \psi)=\phi \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \psi+\psi \frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}} \phi=\phi(\nabla \psi)+\psi(\nabla \phi)$

Seems pretty easy at this point, doesn' t it?

