PHYS 301
 HOMEWORK \#7

Due : 20 March 2015

1. Verify the divergence theorem for the position vector \mathbf{r} :

$$
\mathbf{r}=\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}}
$$

over the sphere of radius R centered on the origin. (Hint : What is the unit normal to the surface of a sphere?)
2. Use the divergence theorem to evaluate

$$
\begin{equation*}
\iint_{S}\left(x^{2} d y d z+y^{2} d x d z+z^{2} d x d y\right) \tag{1}
\end{equation*}
$$

where S is the unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$
3. Verify Stokes' theorem for the vector :

$$
\begin{equation*}
\mathbf{v}=\mathrm{z} \hat{\mathbf{x}}+\mathrm{x} \hat{\mathbf{y}} \tag{2}
\end{equation*}
$$

for the area defined by the unit square $0 \leq x \leq 1,0 \leq y \leq 1$.
4. Verify Stokes' theorem for the vector

$$
\begin{equation*}
\mathbf{v}=\mathrm{z}^{2} \hat{\mathbf{x}}+\mathrm{x}^{2} \hat{\mathbf{y}}+\mathrm{y}^{2} \hat{\mathbf{z}} \tag{3}
\end{equation*}
$$

over the same area in question 3.
5. Verify Stokes' theorem for the vector

$$
\begin{equation*}
\mathbf{v}=\mathrm{y} \hat{\mathbf{x}}+\mathrm{x}^{3} \hat{\mathbf{y}}-\mathrm{zy} \mathrm{y}^{3} \hat{\mathbf{z}} \tag{4}
\end{equation*}
$$

over the circular disk $x^{2}+y^{2} \leq 4$ in the plane $\mathrm{z}=-3$.

