PHYS 301
 HOMEWORK \#9-- Solutions

1. For this problem, it is important to remember that if a vector field is conservative (i.e., its curl $=$ 0), then the vector can be derived from a scalar potential. Additionally, if the field is conservative, its line integral is path independent, and can be computed either directly as a line integral, or by finding the value of its potential at the end points. For the two vectors given, a) is non - conservative (it should be easy to show its curl is non - zero) and b) is conservative.

Therefore, we have to compute the line integral for case a) explicitly for the two paths given. Recall that :

$$
\int_{\mathrm{C}} \mathbf{F} \cdot \mathrm{~d} \mathbf{l}=\int_{\mathrm{C}}\left(\mathrm{~F}_{\mathrm{x}} \mathrm{dx}+\mathrm{F}_{\mathrm{y}} \mathrm{dy}+\mathrm{F}_{\mathrm{z}} \mathrm{dz}\right)
$$

For the vector in case a) :

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{xy} \quad \mathrm{~F}_{\mathrm{y}}=2 \mathrm{yz} \quad \mathrm{~F}_{\mathrm{z}}=3 \mathrm{xz}
$$

so the line integral becomes :

$$
\int_{C}(x y d x+(2 y z d y+3 x z d z)
$$

The first path is the straight line $\mathrm{y}=\mathrm{x}$, so we can parameterize this integral as $\mathrm{x}=\mathrm{y}=\mathrm{t}$; $\mathrm{dx}=\mathrm{dy}=$ dt . Since we are in the xy plane, $\mathrm{z}=\mathrm{dz}=0$, and the line integral is simply :

$$
\int_{0}^{1} \mathrm{t}^{2} \mathrm{dt}=\frac{1}{3}
$$

Along the path $\mathrm{y}=\mathrm{x}^{2}$, we set:

$$
\mathrm{x}=\mathrm{t} ; \mathrm{dx}=\mathrm{dt} ; \mathrm{y}=\mathrm{t}^{2} ; \mathrm{dy}=2 \mathrm{tdt} \mathrm{t}^{\prime} \mathrm{z}=\mathrm{dz}=0
$$

and the line integral becomes :

$$
\int_{0}^{1} \mathrm{t}^{3} \mathrm{dt}=\frac{1}{4}
$$

The second vector field is conservative, so we should expect the line integral to be the same for both paths (but let' s do both to verify). Using the parameterization $\mathrm{x}=\mathrm{y}=\mathrm{t} ; \mathrm{dx}=\mathrm{dy}=\mathrm{dt} ; \mathrm{z}=\mathrm{dz}=0$:

$$
\int_{0}^{1}\left(\mathrm{t}^{2} \mathrm{dt}+2 \mathrm{t}^{2} \mathrm{dt}\right)=1
$$

Along the curved path, we set :

$$
\mathrm{x}=\mathrm{t} \mathrm{dx}=\mathrm{dt} \mathrm{y}=\mathrm{t}^{2} \quad \mathrm{dy}=2 \mathrm{tdt} \quad \mathrm{z}=\mathrm{dz}=0
$$

and the line integral becomes :

$$
\int_{0}^{1}\left(\mathrm{t}^{4} \mathrm{dt}+2 \mathrm{t}^{3}(2 \mathrm{tdt})\right)=\int_{0}^{1} 5 \mathrm{t}^{4} \mathrm{dt}=1
$$

as we expect.
We can also find the potential from which this force is derived and find the work by evaluating the potential at the end points of the path. We can write :

$$
\mathbf{F}_{2}=\nabla \phi \Rightarrow\left\{\mathrm{y}^{2}, 2 \mathrm{xy}+\mathrm{z}^{2}, 2 \mathrm{yz}\right\}=\left\{\frac{\partial \phi}{\partial \mathrm{x}}, \frac{\partial \phi}{\partial \mathrm{y}}, \frac{\partial \phi}{\partial \mathrm{z}}\right\}
$$

Equating the x components of each vector and integrating gives us :

$$
\frac{\partial \phi}{\partial \mathrm{x}}=\mathrm{y}^{2} \Rightarrow \phi=\mathrm{y}^{2} \mathrm{x}+\mathrm{g}(\mathrm{y}, \mathrm{z})
$$

where the constant of integration is constant with respect to x, so to be as general as we can be we write the constant as a function of y and z . If we differentiate this expression for ϕ with respect to y , and equate it to the y component of the vector we obtain :

$$
\frac{\partial \phi}{\partial y}=2 y x+g^{\prime}(y, z)=2 x y+z^{2}
$$

This means that $\mathrm{g}^{\prime}(\mathrm{y}, \mathrm{z})=\mathrm{z}^{2}$. Integrating this tells $\mathrm{us} \mathrm{g}(\mathrm{y}, \mathrm{z})=\mathrm{z}^{2} \mathrm{y}+\mathrm{h}(\mathrm{z})$. Substituting this back into our expression for ϕ gives:

$$
\phi=\mathrm{xy}^{2}+\mathrm{y} \mathrm{z}^{2}+\mathrm{h}(\mathrm{z})
$$

Now, we differentiate ϕ with respect to z and equate with the z component of the vector :

$$
\frac{\partial \phi}{\partial \mathrm{z}}=2 \mathrm{yz}+\mathrm{h}^{\prime}(\mathrm{z})=2 \mathrm{yz} \Rightarrow \mathrm{~h}^{\prime}(\mathrm{z})=0 \text { and } \mathrm{h}(\mathrm{z})=\text { numerical constant }
$$

Thus, apart from a numerical constant, we know that

$$
\phi=x y^{2}+y z^{2}
$$

Finally, we compute the work from :

$$
\mathrm{W}=\phi(1,1,0)-\phi(0,0,0)=1
$$

2. To find the scale factors, we first find expressions for dx, dy and dz :

$$
\begin{gathered}
d x=v \cos \theta d u+u \cos \theta d v-u v \sin \theta d \theta \\
d y=v \sin \theta d u+u \sin \theta d v+u v \cos \theta d \theta \\
d z=u d u-v d v
\end{gathered}
$$

Well, we can write out lots of terms and add, or we can be appropriately lazy :

```
In[249]:= Clear[dx, dy, dz, du, dv, de, u, v, 0]
dx = v Cos[0] du + u Cos[0] dv - uv vin[0] d0;
dy = v Sin[0] du + u Sin[0] dv + uv vos[0]d0;
dz = udu - v dv;
Expand[dx^2+dy^2+dz^2]
```

Out[253]= $d u^{2} u^{2}-2 d u d v u v+d v^{2} v^{2}+d v^{2} u^{2} \operatorname{Cos}[\theta]^{2}+2 d u d v u v \operatorname{Cos}[\theta]^{2}+d u^{2} v^{2} \operatorname{Cos}[\theta]^{2}+$
$d \theta^{2} u^{2} v^{2} \operatorname{Cos}[\theta]^{2}+d v^{2} u^{2} \operatorname{Sin}[\theta]^{2}+2 d u d v u v \operatorname{Sin}[\theta]^{2}+d u^{2} v^{2} \operatorname{Sin}[\theta]^{2}+d \theta^{2} u^{2} v^{2} \operatorname{Sin}[\theta]^{2}$

That' s ugly; let' s simplify :
$\ln [254]:=$ Simplify [\%]
Out[254] $=d \theta^{2} u^{2} v^{2}+d u^{2}\left(u^{2}+v^{2}\right)+d v^{2}\left(u^{2}+v^{2}\right)$
Ok, no cross terms, it' s an orthogonal transformation, and the scale factors are :

$$
\mathrm{h}_{\mathrm{u}}=\mathrm{h}_{\mathrm{v}}=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}} \quad \mathrm{~h}_{\phi}=\mathrm{uv}
$$

To find unit vectors, write the position vector

$$
\mathbf{r}=\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}}=\mathrm{uv} \cos \theta \hat{\mathbf{x}}+\mathrm{uv} \sin \theta \hat{\mathbf{y}}+\frac{1}{2}\left(\mathrm{u}^{2}-\mathrm{v}^{2}\right) \hat{\mathbf{z}}
$$

and each unit vector is determined from :

$$
\hat{\mathbf{q}}_{\mathbf{i}}=\frac{\partial \mathbf{r}}{\partial \mathrm{q}_{\mathrm{i}}} /\left|\frac{\partial \mathbf{r}}{\partial \mathrm{q}_{\mathrm{i}}}\right|
$$

where $\hat{\boldsymbol{q}}_{i}$ is the generalized unit vector. Applying this definition:
$\hat{\mathbf{u}}=\frac{\mathrm{v} \cos \theta \hat{\mathbf{x}}+\mathrm{v} \sin \theta \hat{\mathbf{y}}+\mathrm{u} \hat{\mathbf{z}}}{\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}}$
$\hat{\mathbf{v}}=\frac{\mathrm{u} \cos \theta \hat{\mathbf{x}}+\mathrm{u} \sin \theta \hat{\mathbf{y}}-\mathrm{v} \hat{\mathbf{z}}}{\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}}$
$\hat{\boldsymbol{\theta}}=\frac{-\mathrm{uv} \sin \theta \hat{\mathbf{x}}+\mathrm{uv} \cos \theta \hat{\mathbf{y}}}{\mathrm{uv}}=-\sin \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{y}}$
And it is easy to take dot products of the vectors to show that the basis vectors are orthogonal.
3. See solution in separate link.
4. We make the substitutions :

$$
v=\frac{\mathrm{c}}{\lambda} \text { and } \mathrm{d} v=\frac{-\mathrm{c}}{\lambda^{2}} \mathrm{~d} \lambda
$$

to obtain :

$$
B_{\lambda}(T) d \lambda=2 h \frac{\left(\frac{c}{\lambda}\right)^{3}}{c^{2}} \frac{1}{e^{h c / \lambda k T}-1} \frac{c}{\lambda^{2}} d \lambda=2 h \frac{c^{2}}{\lambda^{5}}\left(\mathrm{e}^{\mathrm{hc} / \lambda k T}-1\right)^{-1} d \lambda
$$

Using Mathematica :
$\ln [255]:=\mathbf{C l e a r}[\mathbf{b}, \boldsymbol{\lambda}, \mathbf{t}, \mathbf{h}, \mathbf{c}, \mathbf{k}]$
$b\left[\lambda_{-}, t_{-}\right]:=b\left[\lambda, t^{\prime}\right]=\left(2 h^{2} / \lambda \wedge 5\right)(\operatorname{Exp}[h c /(\lambda k t)]-1)^{-1}$
$D[b[\lambda, t], \lambda]$
Out[257] $=\frac{2 c^{3} e^{\frac{c h}{k t \lambda}} h^{2}}{\left(-1+e^{\frac{c h}{k t \lambda}}\right)^{2} k t \lambda^{7}}-\frac{10 c^{2} h}{\left(-1+e^{\frac{c h}{k t \lambda}}\right) \lambda^{6}}$

If you set this equal to zero and cancel common factors, you obtain :

$$
\frac{\frac{\mathrm{hc}}{\lambda \mathrm{kt}} \mathrm{e}^{\mathrm{hc} / \lambda \mathrm{kt}}}{\mathrm{e}^{\mathrm{hc} / \lambda \mathrm{kt}}-1}=5
$$

If we set $\mathrm{x}=\mathrm{hc} / \lambda \mathrm{k} \mathrm{t}$, this equation becomes :

$$
\frac{\mathrm{xe}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}-1}=5
$$

Which can be solved either via :
$\ln [259]:=\operatorname{Solve}[X \operatorname{Exp}[\mathbf{X}]=5(\operatorname{Exp}[\mathbf{X}]-1), X] / / N$
Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >> Out[259] $=\{\{x \rightarrow 0\},. \quad\{x \rightarrow 4.96511\}\}$
or via :
$\ln [261]:=\operatorname{FindRoot}[x \operatorname{Exp}[x]==5(\operatorname{Exp}[x]-1),\{x, 5\}]$
Out[261] $=\{x \rightarrow 4.96511\}$
Using standard MKS values for h, c and k and this value of x allows us to write Wien' s Law :

$$
\mathrm{x}=\frac{\mathrm{hc}}{\lambda \mathrm{kT}} \Rightarrow \lambda_{\max }=\frac{\mathrm{hc}}{\mathrm{xkT}}=\frac{0.0029}{\mathrm{~T}}
$$

where T is measured in Kelvins and λ in meters. The sun' s radiating temperature is approximately 5800 K , so the wavelength of maximum energy emission is $500 \mathrm{~nm}\left(510^{-7} \mathrm{~m}\right)$

