
PHYS 301

HOMEWORK #9-- Solutions
1.  For this problem, it is important to remember that if a vector field is conservative (i.e., its curl =
0), then the vector can be derived from a scalar potential.  Additionally, if the field is conservative,
its line integral is path independent, and can be computed either directly as a line integral, or by
finding the value of its potential at the end points.  For the two vectors given, a) is non - conserva-
tive (it should be easy to show its curl is non - zero) and b) is conservative.   

Therefore, we have to compute the line integral for case a) explicitly for the two paths given.  Recall
that :


C

F ÿ dl = 
C
Fx dx + Fy dy + Fz dz

For the vector in case a) :

Fx = x y Fy = 2 y z Fz = 3 x z

so the line integral becomes :


C
x y dx + 2 y z dy + 3 x z dz

The first path is the straight line y = x, so we can parameterize this integral as x = y = t; dx = dy =
dt.  Since we are in the xy plane, z = dz = 0, and the line integral is simply :


0

1

t2 dt =
1

3

Along the path y = x2 , we set:

x = t; dx = dt; y = t2; dy = 2 t dt ' z = dz = 0

and the line integral becomes :


0

1

t3 dt =
1

4

The second vector field is conservative, so we should expect the line integral to be the same for both
paths (but let' s do both to verify).  Using the parameterization x = y = t; dx = dy = dt; z = dz = 0 :


0

1

t2 dt + 2 t2 dt = 1

Along the curved path, we set :

x = t dx = dt y = t2 dy = 2 t dt z = dz = 0

and the line integral becomes :




0

1

t4 dt + 2 t3 2 t dt = 
0

1

5 t4 dt = 1

as we expect.

We can also find the potential from which this force is derived and find the work by evaluating the
potential at the end points of the path.  We can write :

F2 = !f fl y2, 2 x y + z2, 2 y z = ∑f
∑x

,
∑f

∑y
,
∑f

∑z


Equating the x components of each vector  and integrating gives us :

∑f

∑x
= y2 fl f = y2 x + g y, z

where the constant of integration is constant with respect to x, so to be as general as we can be we
write the constant as a function of y and z.  If we differentiate this expression for f with respect to y,
and equate it to the y component of the vector we obtain :

∑f

∑y
= 2 y x + g' y, z = 2 x y + z2

This means that g' (y, z) = z2 .  Integrating this tells us g(y,z) = z2y + h (z).  Substituting this back
into our expression for f gives:

f = x y2 + y z2 + h z
Now, we differentiate f with respect to z and equate with the z component of the vector :

∑f

∑z
= 2 y z + h' z = 2 y z fl h' z = 0 and h z = numerical constant

Thus, apart from a numerical constant, we know that 

f = x y2 + y z2

Finally, we compute the work from :

W = f 1, 1, 0-f 0, 0, 0 = 1

2.  To find the scale factors, we first find expressions for dx, dy and dz :

dx = v cos q du + u cos q dv - u v sin q dq
dy = v sin q du + u sin q dv + u v cos q dq

dz = u du - v dv

Well, we can write out lots of terms and add, or we can be appropriately lazy :
In[249]:= Cleardx, dy, dz, du, dv, d, u, v, 

dx  v Cos du  u Cos dv  u v Sin d;

dy  v Sin du  u Sin dv  u v Cos d;

dz  u du  v dv;

Expanddx^2  dy^2  dz^2
Out[253]= du2 u2  2 du dv u v  dv2 v2  dv2 u2 Cos2  2 du dv u v Cos2  du2 v2 Cos2 

d2 u2 v2 Cos2  dv2 u2 Sin2  2 du dv u v Sin2  du2 v2 Sin2  d2 u2 v2 Sin2
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That' s ugly; let' s simplify :
In[254]:= Simplify

Out[254]= d2 u2 v2  du2 u2  v2  dv2 u2  v2
Ok, no cross terms, it' s an orthogonal transformation, and the scale factors are :

hu = hv = u2 + v2 hf = u v

To find unit vectors, write the position vector 

r = x x
`
+ y y

`
+ z z

`
= u v cos q x

`
+ u v sin q y

`
+

1

2
u2 - v2 z

`

and each unit vector is determined from :

q
`

i =
∑r

∑qi

 ∑r

∑qi

where q
`

i is the generalized unit vector.  Applying this definition:

u
`
=

v cos q x
`
+ v sin q y

`
+ u z

`

u2 + v2

v
`
=

u cos q x
`
+ u sin q y

`
- v z

`

u2 + v2

q
`
=
-u v sin q x

`
+ u v cos q y

`

u v
= - sin x

`
+ cos q y

`

And it is easy to take dot products of the vectors to show that the basis vectors are orthogonal.

3.  See solution in separate link.

4.  We make the substitutions :

n =
c

l
and d  =

- c

l2
dl

to obtain :

Bl T dl = 2 h
 c
l
3

c2

1

eh cl k T - 1

c

l2
dl = 2 h

c2

l5
eh cl k T - 1-1

dl

Using Mathematica :
In[255]:= Clearb, , t, h, c, k

b_, t_ : b, t  2 h c2  ^5 Exph c   k t  11

Db, t, 

Out[257]=
2 c3 

c h

k t  h2

1  
c h

k t 
2

k t 7


10 c2 h

1  
c h

k t  6
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If you set this equal to zero and cancel common factors, you obtain :
h c
l k t

eh cl k t

eh cl k t - 1
= 5

If we set x = h c/l k t, this equation becomes :

x ex

ex - 1
= 5

Which can be solved either via :
In[259]:= Solvex Expx  5 Expx  1, x  N

Solve::ifun :

Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. à

Out[259]= x  0., x  4.96511
or via :

In[261]:= FindRootx Expx  5 Expx  1, x, 5
Out[261]= x  4.96511

Using standard MKS values for h, c and k and this value of x allows us to write Wien' s Law :

x =
hc

l k T
fl lmax =

hc

x k T
=

0.0029

T

where T is measured in Kelvins and l in meters.  The sun' s radiating temperature is approximately
5800 K, so the wavelength of maximum energy emission is 500 nm (5 10-7m)
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