PHYS 301
HOMEWORK #9-- Solutions

1. For this problem, it is important to remember that if a vector field is conservative (i.e., its curl =
0), then the vector can be derived from a scalar potential. Additionally, if the field is conservative,
its line integral is path independent, and can be computed either directly as a line integral, or by
finding the value of its potential at the end points. For the two vectors given, a) is non - conserva-
tive (it should be easy to show its curl is non - zero) and b) is conservative.

Therefore, we have to compute the line integral for case a) explicitly for the two paths given. Recall
that :

fF ~dl = f(Fde + Fydy + F,dz)
C C

For the vector in case a) :
Fx =Xy Fy=2yz F, = 3xz

so the line integral becomes :
f(xydx + (2yzdy + 3xzdz)
c

The first path is the straight line y = x, so we can parameterize this integralasx =y =t; dx = dy =
dt. Since we are in the xy plane, z = dz = 0, and the line integral is simply :

1 1
ftzdt = —
0 3
Along the path y = x?, we set:
x=tdx=dty=1t5dy = 2tdt'z = dz =0

1 1
ft3dt: -
0 4

The second vector field is conservative, so we should expect the line integral to be the same for both
paths (but let' s do both to verify). Using the parameterizationx =y =t;dx=dy =dt;z=dz=0:

1
f(tzdt+ 2t%dt) = 1
0

and the line integral becomes :

Along the curved path, we set :
X=tdx=dt y=1t> dy =2tdt z=dz=0

and the line integral becomes :
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In[249]:=

Out[253]=

i 1
f(t4dt+2t3(2tdt)) = f5t4dt =1
0 0

as we expect.

We can also find the potential from which this force is derived and find the work by evaluating the
potential at the end points of the path. We can write :

¢ 0¢ 0¢
F, = V = 2,2X +22,2 Zp =\ T
2 ¢ = {y* 2xy yz) {8x6yaz}
Equating the x components of each vector and integrating gives us :
o¢
— =y 26 =yx+g(y2
0X

where the constant of integration is constant with respect to x, so to be as general as we can be we
write the constant as a function of y and z. If we differentiate this expression for ¢ with respect to y,
and equate it to the y component of the vector we obtain :

0¢ . )
— =2yxX+09'(y,2) = 2Xy +z
ay

This means that g' (y, z) = z? . Integrating this tells us g(y,z) = z?y + h (z). Substituting this back
into our expression for ¢ gives:

¢ =xy’ +yzZ2+h(2)

Now, we differentiate ¢ with respect to z and equate with the z component of the vector :

0
6_¢ =2yz+h'(z) =2yz = h'(z) = 0andh(z) = numerical constant
z
Thus, apart from a numerical constant, we know that
¢ = xy*+yz?
Finally, we compute the work from :
W=¢1,1,0-¢(0,0,0) =1

2. To find the scale factors, we first find expressions for dx, dy and dz :

dx = vcosfdu + ucosfdv — uvsingdé
dy = vsinfdu + usinfdv + uvcosfdd
dz = udu — vdv

Well, we can write out lots of terms and add, or we can be appropriately lazy :

Clear[dx, dy, dz, du, dv, de, u, v, 8]

dx = vCos[e] du + uCos[e] dv - uvSin[e] de;
dy = vSin[e] du + uSin[e] dv + uv Cos[e] de;
dz = udu - vdv;

Expand [dX"2 + dy”~2 + dz"2]

du?u?-2dudvuv+dv?v2+dv?u?Cos[e]?+2dudvuvCos[o]?+du?v2Cos[o]?+
de? u? v2 Cos (612 + dv? U2 Sin[o]2 +2dudvuvSin[e]? + du® v Sin[o]? + do? u? v2 Sin[o]?



phys301-2015hw9s.nb |3

That' s ugly; let' s simplify :
in2say= SImplify[%]
ouizsa= de? u? v2 + du? (u? + v2) + dv? (U2 +Vv?)
Ok, no cross terms, it' s an orthogonal transformation, and the scale factors are :

hu = hV: U2+V2

hy = uv
To find unit vectors, write the position vector

A A

A A - A 1 2 2 A
r=xX+yy+ z:uvcos@x+uvsm0y+5(u -V?)2
and each unit vector is determined from :

% = a4 /‘ aq;

where §; is the generalized unit vector. Applying this definition:

VCOSHX + vsinfy + uz

u =
\ U2 +v2
. ucosfX + usingy — vz
VvV =
\ uZ+v2
~ —UuvsingX + uvcosoy o .
6 = = —SINX + cosfy

uv
And it is easy to take dot products of the vectors to show that the basis vectors are orthogonal.

3. See solution in separate link.

4. We make the substitutions :

C —
y=—anddv = —daA
A A
to obtain :
c\3
< 1 C c? _
By(T)dA = 2h &) —dA = 2h = (e"AKT 1) dh
CZ ehC/AkT_l AZ AS

Using Mathematica :
nessj= Clear[b, A, t, h, c, k]
b{A_, t_] :=b[A, t] = (2hc? /a75) (Explhc/ (Akt)] -1)7*
DIb[A, t], Al
2c8 ekt h2 10c2h
out[257]= - -
(—1+e%) kt? (—1+em) 28
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If you set this equal to zero and cancel common factors, you obtain :

_hec _he/akt
Akte _
ghe/dkt _q

If we set x = h ¢/A k t, this equation becomes :
X eX

eX—1

Which can be solved either via :
in2s9)= Solve [X EXp[X] == 5 (Exp[x] -1), X] // N
Solverifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >

ous9= {{X > 0.}, {X > 4.96511}}

orvia:
inze1:= FINAROOt[X EXp[X] = 5 (EXp[X] -1), {X, 5}]
ouze1]= {X - 4.96511}

Using standard MKS values for h, ¢ and k and this value of x allows us to write Wien's Law :
hc hc 0.0029

= Amax

AKT ToxkT T
where T is measured in Kelvins and A in meters. The sun' s radiating temperature is approximately
5800 K, so the wavelength of maximum energy emission is 500 nm (5 10~"m)




