
PHYS 301
HOMEWORK #12-- Solutions

1.  We start with Hermite' s differential equation :

y''- 2 x y' + 2 k y = 0

where k is an integer.  We start with our trial solution:

y = Σ
n=0

∞
an xn

which allows us to write:

y' = Σ
n=1

∞
n an xn-1 and y'' = Σ

n=2

∞
n (n- 1) an xn-2

Using these relations in the original differential equation yields:

Σ
n=2

∞
n (n- 1) an xn-2 - 2 Σ

n=1

∞
n an xn + 2 k Σ

n=0

∞
an xn = 0

Re - indexing the first sum :

Σ
n=0

∞
(n+ 2) (n+ 1) an+2 xn - 2 Σ

n=1

∞
n an xn + 2 k Σ

n=0

∞
an xn = 0

Stripping out the n=1 terms in the first and last sums:

2 a2 + 2 kao + Σ
n=1

∞
[(n+ 2) (n+ 1) an+2 - 2 n an + 2 k an] xn = 0

The stripped out terms tells us that a2 = - k ao, and the summation produces the recursion relation:

an+2 =
2 (n- k)

(n+ 2) (n+ 1)
ao

Notice that the series truncates when n = k, and that there will be an odd and even branch of the 

solution.

b) We are given that ao= 0 and a1=15.  

Since the recursion relation equates odd coefficients with each other, and even coefficients with 

each other, a2 is a multiple of ao (and so is zero); a4is a multiple of a2 (and so is zero), and by simi-

lar reasoning, we can show all even coefficients are zero.

For k = 5, we can see that when n = 5, the numerator will go to zero, meaning that a7 is zero.  

Hence, our solution is an odd polynomial of order 5.  We find the remaining coefficients:

a3 = 2 (1- 5)
a1

3 · 2
=

-4

6
a1 =

-2

3
· 15 = - 20

a5 =
2 (3- 5) a3

5 · 4
=

-a3

5
= 4



And the polynomial that results is:

y = 15 x- 20 x3 + 4 x5

Test that this solutions satisfies the original ODE:

In[87]:= Clear[f]

f[x_] := 4 x^5 - 20 x^3+ 15 x

Simplify[f ''[x] - 2 x f'[x] + 10 f[x]]

Out[89]= 0

If we solved the original differential equation with the given initital conditions using DSolve in 

Mathematica:

In[8]:= DSolve[{y''[x] - 2 x y'[x] + 10 y[x] ⩵ 0, y[0] ⩵ 0, y'[0] ⩵ 15}, y[x], x]

Out[8]= y[x] → 15 x- 20 x3 + 4 x5

Verifying our solution.

2.  We know that we can expand functions satisfying Dirichlet' s conditions on [-1, 1] in a Legendre 

series of the form :

f (x) = Σ
m=0

∞
cm Pm (x)

where the Pm(x) are the Legendre polynomials and the coefficients are found using:

cm =
2 m+ 1

2


-1

1
f (x) Pm (x) dx

Setting m = 0, we find:

c0 =
1

2


-1

1
x2 + 3 · 1 dx

Now, this is an easy integral to do, but we should keep up our good habits an notice that this is an 

even integrand on an interval [-L, L], so we can use symmetry and write this as :

c0 = 
0

1
x2 + 3 dx =

10

3

Setting m = 1 gives us:

c1 =
3

2


-1

1
x2 + 3 P1 (x) dx

and this is again a simple integral, but if we think for just a second, we realize we don’t have to do 

the integral at all.  We learned in class that the Legendre polynomials are even if m is even, and odd 

if m is odd.  Thus, P1 is odd, our function x2 + 3 is even, so their product yields an odd integrand.  

And we know that the integral of an odd integrand over [-L,L] is zero, so we can conclude that c1, 

c3, and all other odd coefficients will be zero.  In short, our Legendre series will consist of only 
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even powers (which makes sense given that our function is even).

c2 =
5

2


-1

1
x2 + 3 P2 (x) dx = 5

0

1
x2 + 3 P2 (x) dx =

5

2


0

1
x2 + 3 3 x2 - 1 dx =

2

3

c4 =
9

2


-1

1
x2 + 3 P4 (x) dx = 9

-1

1
x2 + 3 ·

1

8
35 x4 - 30 x2 + 3 dx = 0

We can write our Legendre series as:

f (x) = co Po + c2 P2 =
10

3
+

2

3
·

1

2
3 x2 - 1 =

10

3
+ x2 -

1

3
= x2 + 3

3.  We find the Legendre series for our old friend :

f (x) = 
-1, -1 < x < 0
1, 0 < x < 1

We can use symmetry arguments to recognize that our function is odd, and therefore all the even 

coefficients will be zero.  We can find the coefficients:

c1 =
3

2


-1

1
f (x) P1 (x) dx = 3

0

1
1 · P1 (x) dx =

3

2

c3 =
7

2


-1

1
f (x) P3 (x) dx = 7

0

1
1 · P3 (x) dx = 7 ·

1

2


0

1
5 x3 - 3 x dx =

-7

8

We could continue this process on, let’s see how Mathematica can help. Below is a short program 

which outputs the first ten coefficients and also plots the Legendre sum of the terms out to P31:

In[82]:= Clear[m, f, coefficient, x, y]

f[x_] := Which[-1 < x < 0, -1, 0 < x < 1, 1]

coefficient[m_] :=

coefficient[m] = (2 m+ 1) / 2 Integrate[f[x] LegendreP[m, x], {x, -1, 1}]

Plot[Sum[coefficient[n] LegendreP[n, y], {n, 0, 31}], {y, -1, 1}]

Do[Print["The ", m, " th Legendre coefficient is: ", coefficient[m]], {m, 0, 10}]

Out[85]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

phys301-2016hw12s.nb     3



The 0 th Legendre coefficient is: 0

The 1 th Legendre coefficient is:
3

2

The 2 th Legendre coefficient is: 0

The 3 th Legendre coefficient is: -
7

8

The 4 th Legendre coefficient is: 0

The 5 th Legendre coefficient is:
11

16

The 6 th Legendre coefficient is: 0

The 7 th Legendre coefficient is: -
75

128

The 8 th Legendre coefficient is: 0

The 9 th Legendre coefficient is:
133

256

The 10 th Legendre coefficient is: 0

So the first several terms of the Legendre series are:

f (x) =
3

2
P1 -

7

8
P3 +

11

16
P5 - ...

4.  Following the discussion in class and in the classnote, we write the potential at O as :

V =
2 k q

r
-

k q

r1
-

k q

r2
= k q

2

r
-

1

r1
+

1

r2

Note carefully how the signs of the charges are included in this expression.  We know from class 

that we can write 1 / r1 and 1 / r2 in terms of the law of cosines, and then use Maclaurin series to 

show that these terms generate the Legendre polynomials.  Using results from class, we get:

1

r1
=

1

r
Σ

m=0

∞
Pm (cos θ) (a / r)m

1

r2
=

1

r
Σ

m=0

∞
(-1)m Pm (cos θ) (a / r)m

Remember that the (-1)m arises from the cos(π-θ) term in the distance expression for r2.  

The expression for potential becomes:

V =
k q

r
2-  Σ

m=0

∞
Pm (cos θ) (a / r)m + Σ

m=0

∞
(-1)m Pm (cos θ) (a / r)m

Here, the odd terms in the series sum to zero, leaving us with even terms:
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V =
k q

r
2- 2 P0 (cos θ) (a / r)0 + 2 P2 (cos θ) (a / r)2 + 2 P4 (cos θ) (a / r)4 + ...

We can simplify this expansion a bit more by focusing on the term 2 P0(cos θ) (a / r)0.  Since P0 is 1 

and since (a / r)0is also 1, the expansion simplifies to:

V =
k q

r
2- 2+ 2 P2 (cos θ) (a / r)2 + 2 P4 (cos θ) (a / r)4 + ...

= 2
k q

r
Σ

m=2

∞
Pm (cos) (a / r)m for even values of m.

The leading term in the expansion is then

2
k q

r

1

2
3 cos2 θ- 1 (a / r)2 =

k q a2

r3
3 cos2 θ- 1

an equation familiar to you from electrodynamics, where q is the charge, a is the separation between 

charges, r (>>a) is the distance from the origin to the observer, θ is the angle between the observer 

and the quadrupole’s center, and the constant k is 1/(4 π ϵo)  where ϵo is the permittivity of free 

space.
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