PHYS 301
HOMEWORK #12-- Solutions

1. We start with Hermite' s differential equation :
y"'-2xy'+2ky =0
where k is an integer. We start with our trial solution:

which allows us to write:

1 2

y' = OZOnanxn‘ andy" = En(n—l)anxn‘
n=1 n=2

Using these relations in the original differential equation yields:

> nn-1)a,x" 2 =2 s na,x" +2k s apx" =0
n=2 n=1 n=0

Re - indexing the first sum :

o0

§0(11+2)(r1+1)an+2xn ) inanx“ +2k £ anx" = 0

n=

Stripping out the n=1 terms in the first and last sums:

2a)+2ka, + i[(n+2)(n+l)am2— 2na,+2kay]|x" =0

The stripped out terms tells us that a, = - k a,, and the summation produces the recursion relation:
2(n—-k)
dny2 = 7 Qo
Mm+2)(n+1)

Notice that the series truncates when n =k, and that there will be an odd and even branch of the
solution.

b) We are given that a,= 0 and a;=15.

Since the recursion relation equates odd coefficients with each other, and even coefficients with
each other, a, is a multiple of a, (and so is zero); asis a multiple of a (and so is zero), and by simi-
lar reasoning, we can show all even coefficients are zero.

For k=5, we can see that when n = 5, the numerator will go to zero, meaning that a7 is zero.

Hence, our solution is an odd polynomial of order 5. We find the remaining coefficients:

al -4 -2
a3 =2(1-5—=—a = —-15=-20
3.2 6 3
2(3-5)a —a
as = ( )3: 3y

5-4 5
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In[87]:=

out[89]=

In[8):=

out[s]=

And the polynomial that results is:
y = 15x-20x>+4x
Test that this solutions satisfies the original ODE:
Clear|f]
flx_]:=4x"5 -20x"3+15x
Simplify[f"'[x] — 2 x f'[x] + 10 f[x]]
0

If we solved the original differential equation with the given initital conditions using DSolve in

Mathematica:

DSolve[{y"[x] -2 xy'[x] + 10 y[x] == 0, y[0] == 0, y'[0] == 15}, y[x], x]
{{Y[X] - 15x-20x>+4 XS}}

Verifying our solution.

2. We know that we can expand functions satisfying Dirichlet' s conditions on [-1, 1] in a Legendre

series of the form :
f (x) = OZO Cm Pm (X)
m=0
where the P,,(x) are the Legendre polynomials and the coefficients are found using:

2m+1
2

flf (x) Py (x) dx
-1

Cm =

Setting m = 0, we find:
1 1
Co = —f (X2+3)'1dX
2J-1

Now, this is an easy integral to do, but we should keep up our good habits an notice that this is an

even integrand on an interval [-L, L], so we can use symmetry and write this as :

co = ﬁl(x2+3)dx = 13—0

Setting m = 1 gives us:

31,

c| = —f (X +3)P1(X)dx

2J-1
and this is again a simple integral, but if we think for just a second, we realize we don’t have to do
the integral at all. We learned in class that the Legendre polynomials are even if m is even, and odd
if m is odd. Thus, P; is odd, our function (x2 + 3) is even, so their product yields an odd integrand.
And we know that the integral of an odd integrand over [-L,L] is zero, so we can conclude that ¢y,

c3, and all other odd coefficients will be zero. In short, our Legendre series will consist of only
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even powers (which makes sense given that our function is even).

5 rl 1 5 1 2
cZzzf_l(x2+3)P2(x)dx :sﬂ (x*+3)Py(x) dx = Eﬁ (x*+3)(3x*—1)dx = 3

1 1
cy = %f (x*+3)Ps (x) dx = 9f (x2+3)%(35x4—30x2+3)dx =0
-1 -1

We can write our Legendre series as:

10 2 1 5 10 , 1 5
f(x) = coPo+caPy = _+_'_(3X —1) = —+X—— =Xx"+3
3 32 3 3
3. We find the Legendre series for our old friend :
-1, -1<x<0
f0= {17 gre

2

We can use symmetry arguments to recognize that our function is odd, and therefore all the even

coefficients will be zero. We can find the coefficients:

3 ! 1 3
cp = —f fx)P x)dx = 3f 1-Pi(x)dx = —
2J-1 0 2

7 rl 1 1 ! -7
03:—ff(x)P3(x)dx:7[1-P3(x)dx:7-—f (5x3—3x)dx: —
2 J-1 0 2Jo 8

We could continue this process on, let’s see how Mathematica can help. Below is a short program
which outputs the first ten coefficients and also plots the Legendre sum of the terms out to P3;:

nezi= Clear[m, f, coefficient, x, y]
f[x_] := Which[-1<x <0, -1,0<x <1, 1]
coefficient|m_] :=
coefficientfm] = (2 m + 1) / 2 Integrate[f[x] LegendreP[m, x], {x, —1, 1}]
Plot[Sum[coefficient[n] LegendreP[n, y], {n, 0, 31}], {y, —1, 1}]
Do[Print["The ", m, " th Legendre coefficient is: ", coefficientfm]], {m, 0, 10}]

Out[85]= 1 L L L s 1
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The 0 th Legendre coefficient is:

0

.3

The 1 th Legendre coefficient is: 5
0

The 2 th Legendre coefficient is:

The 3 th Legendre coefficient is: — —

The 4 th Legendre coefficient is: 0

The 5 th Legendre coefficient is: —

The 6 th Legendre coefficient is: 0

75
The 7 th Legendre coefficient is: — E

The 8 th Legendre coefficient is: 0
133
The 9 th Legendre coefficient is: ——
256
The 10 th Legendre coefficient is: 0
So the first several terms of the Legendre series are:
3 7 11
f(X) = —P——P3+ —Ps—...
2 8 16

4. Following the discussion in class and in the classnote, we write the potential at O as :

2k k k 2 1 1
v B ()
T I I T I I

Note carefully how the signs of the charges are included in this expression. We know from class
that we can write 1 /71 and 1 /r; in terms of the law of cosines, and then use Maclaurin series to
show that these terms generate the Legendre polynomials. Using results from class, we get:

Lo L% patcost)
I r m=0

1

1)

T e

2 (=" P (cos ) (a/0)"

Remember that the (—1)” arises from the cos(m-6) term in the distance expression for ;.

The expression for potential becomes:
kq

V= T[z -| £, Pucosf) (@/0™+ £ (=" P (cos6) @/n)" |

Here, the odd terms in the series sum to zero, leaving us with even terms:
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kq

V = —[2 - (2 Py (cos0) (a/1)° +2 P, (cos 6) (a/1r)* + 2 P4 (cos 6) (a/r)* + )]
T

We can simplify this expansion a bit more by focusing on the term 2 Py(cos 6) (a/r)°. Since Py is 1
and since (a / r)’is also 1, the expansion simplifies to:

kq

V= —[2-(2+2P;y(cos ) (a/r)*+2P4(cos ) (a/r)* +...)|
r
k q <
=2— 22 Pm (cos) (a/r)™ for even values of m.
r m=
The leading term in the expansion is then
kq /1 kqa?
2 _q(_ (3 cos® — 1) (a/r)z) = 4@ (3 cos’ 6 — 1)
r \2 r

an equation familiar to you from electrodynamics, where q is the charge, a is the separation between
charges, r (>>a) is the distance from the origin to the observer, 6 is the angle between the observer
and the quadrupole’s center, and the constant k is 1/(4 w €,) where €, is the permittivity of free

space.



