PHYS 301
 HOMEWORK \#12-- Solutions

1. We start with Hermite' s differential equation :

$$
y^{\prime \prime}-2 x y^{\prime}+2 k y=0
$$

where k is an integer. We start with our trial solution:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

which allows us to write:

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad \text { and } y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Using these relations in the original differential equation yields:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-2 \sum_{n=1}^{\infty} n a_{n} x^{n}+2 k \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Re - indexing the first sum :

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-2 \sum_{n=1}^{\infty} n a_{n} x^{n}+2 k \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Stripping out the $\mathrm{n}=1$ terms in the first and last sums:

$$
2 \mathrm{a}_{2}+2 \mathrm{ka}_{\mathrm{o}}+\sum_{\mathrm{n}=1}^{\infty}\left[(\mathrm{n}+2)(\mathrm{n}+1) \mathrm{a}_{\mathrm{n}+2}-2 \mathrm{na}_{\mathrm{n}}+2 k \mathrm{a}_{\mathrm{n}}\right] \mathrm{x}^{\mathrm{n}}=0
$$

The stripped out terms tells us that $a_{2}=-\mathrm{k} a_{0}$, and the summation produces the recursion relation:

$$
\mathrm{a}_{\mathrm{n}+2}=\frac{2(\mathrm{n}-\mathrm{k})}{(\mathrm{n}+2)(\mathrm{n}+1)} \mathrm{a}_{0}
$$

Notice that the series truncates when $\mathrm{n}=\mathrm{k}$, and that there will be an odd and even branch of the solution.
b) We are given that $a_{o}=0$ and $a_{1}=15$.

Since the recursion relation equates odd coefficients with each other, and even coefficients with each other, a_{2} is a multiple of a_{o} (and so is zero); a_{4} is a multiple of a_{2} (and so is zero), and by similar reasoning, we can show all even coefficients are zero.

For $\mathrm{k}=5$, we can see that when $\mathrm{n}=5$, the numerator will go to zero, meaning that a_{7} is zero.
Hence, our solution is an odd polynomial of order 5 . We find the remaining coefficients:

$$
\begin{gathered}
a_{3}=2(1-5) \frac{a_{1}}{3 \cdot 2}=\frac{-4}{6} a_{1}=\frac{-2}{3} \cdot 15=-20 \\
a_{5}=\frac{2(3-5) a_{3}}{5 \cdot 4}=\frac{-a_{3}}{5}=4
\end{gathered}
$$

And the polynomial that results is:

$$
y=15 x-20 x^{3}+4 x^{5}
$$

Test that this solutions satisfies the original ODE:
$\ln [8]]=$ Clear $[f]$
$\mathrm{f}\left[\mathrm{x}_{-}\right]$: $=4 \mathrm{x}^{\wedge} 5-20 \mathrm{x}^{\wedge} \mathbf{3}+\mathbf{1 5 x}$
Simplify[f' $\left.[x]-2 \times f^{\prime}[x]+10 f[x]\right]$
Outige $=0$
If we solved the original differential equation with the given initital conditions using DSolve in Mathematica:

In $[8]=$ DSolve $\left[\left\{y^{\prime \prime}[\mathrm{x}]-2 \mathrm{x} \mathrm{y}^{\prime}[\mathrm{x}]+10 \mathrm{y}[\mathrm{x}]=\mathbf{0}, \mathrm{y}[0]=0, \mathrm{y}^{\prime}[0]=\mathbf{1 5}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right]$
Out f$]=\left\{\left\{\left\{\mathrm{y}[\mathrm{x}] \rightarrow 15 \mathrm{x}-20 \mathrm{x}^{3}+4 \mathrm{x}^{5}\right\}\right\}\right.$
Verifying our solution.
2. We know that we can expand functions satisfying Dirichlet' s conditions on $[-1,1]$ in a Legendre series of the form :

$$
\mathrm{f}(\mathrm{x})=\sum_{\mathrm{m}=0}^{\infty} \mathrm{c}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}(\mathrm{x})
$$

where the $P_{m}(\mathrm{x})$ are the Legendre polynomials and the coefficients are found using:

$$
c_{m}=\frac{2 m+1}{2} \int_{-1}^{1} f(x) P_{m}(x) d x
$$

Setting $\mathrm{m}=0$, we find:

$$
\mathrm{c}_{0}=\frac{1}{2} \int_{-1}^{1}\left(\mathrm{x}^{2}+3\right) \cdot 1 \mathrm{dx}
$$

Now, this is an easy integral to do, but we should keep up our good habits an notice that this is an even integrand on an interval [-L, L], so we can use symmetry and write this as :

$$
\mathrm{c}_{0}=\int_{0}^{1}\left(\mathrm{x}^{2}+3\right) \mathrm{dx}=\frac{10}{3}
$$

Setting $\mathrm{m}=1$ gives us:

$$
c_{1}=\frac{3}{2} \int_{-1}^{1}\left(x^{2}+3\right) P_{1}(x) d x
$$

and this is again a simple integral, but if we think for just a second, we realize we don't have to do the integral at all. We learned in class that the Legendre polynomials are even if m is even, and odd if m is odd. Thus, P_{1} is odd, our function $\left(x^{2}+3\right)$ is even, so their product yields an odd integrand. And we know that the integral of an odd integrand over [-L,L] is zero, so we can conclude that c_{1}, c_{3}, and all other odd coefficients will be zero. In short, our Legendre series will consist of only
even powers (which makes sense given that our function is even).

$$
\begin{gathered}
c_{2}=\frac{5}{2} \int_{-1}^{1}\left(x^{2}+3\right) P_{2}(x) d x=5 \int_{0}^{1}\left(x^{2}+3\right) P_{2}(x) d x=\frac{5}{2} \int_{0}^{1}\left(x^{2}+3\right)\left(3 x^{2}-1\right) d x=\frac{2}{3} \\
c_{4}=\frac{9}{2} \int_{-1}^{1}\left(x^{2}+3\right) P_{4}(x) d x=9 \int_{-1}^{1}\left(x^{2}+3\right) \cdot \frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) d x=0
\end{gathered}
$$

We can write our Legendre series as:

$$
\mathrm{f}(\mathrm{x})=\mathrm{c}_{0} \mathrm{P}_{\mathrm{o}}+\mathrm{c}_{2} \mathrm{P}_{2}=\frac{10}{3}+\frac{2}{3} \cdot \frac{1}{2}\left(3 \mathrm{x}^{2}-1\right)=\frac{10}{3}+\mathrm{x}^{2}-\frac{1}{3}=\mathrm{x}^{2}+3
$$

3. We find the Legendre series for our old friend :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-1, & -1<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<1\end{cases}
$$

We can use symmetry arguments to recognize that our function is odd, and therefore all the even coefficients will be zero. We can find the coefficients:

$$
\begin{gathered}
c_{1}=\frac{3}{2} \int_{-1}^{1} f(x) P_{1}(x) d x=3 \int_{0}^{1} 1 \cdot P_{1}(x) d x=\frac{3}{2} \\
c_{3}=\frac{7}{2} \int_{-1}^{1} f(x) P_{3}(x) d x=7 \int_{0}^{1} 1 \cdot P_{3}(x) d x=7 \cdot \frac{1}{2} \int_{0}^{1}\left(5 x^{3}-3 x\right) d x=\frac{-7}{8}
\end{gathered}
$$

We could continue this process on, let's see how Mathematica can help. Below is a short program which outputs the first ten coefficients and also plots the Legendre sum of the terms out to P_{31} :

In[82]: $=$ Clear[m, \mathbf{f}, coefficient, $\mathbf{x}, \mathbf{y}]$
$\mathrm{f}\left[\mathrm{x}_{-}\right]$:= Which[-1 $\left.<\mathrm{x}<\mathbf{0},-1,0<\mathrm{x}<1,1\right]$
coefficient[m_]:=
coefficient $[m]=(2 m+1) / 2 \operatorname{Integrate}[f[x]$ LegendreP[m, $x],\{x,-1,1\}]$
Plot[Sum[coefficient[n] LegendreP[n, y], \{n, 0, 31\}], $\{\mathbf{y},-1,1\}]$
Do[Print["The ", m, " th Legendre coefficient is: ", coefficient[m]], \{m, 0, 10\}]

The 0 th Legendre coefficient is: 0
The 1 th Legendre coefficient is: $\frac{3}{2}$
The 2 th Legendre coefficient is: 0
The 3 th Legendre coefficient is: $-\frac{7}{8}$
The 4 th Legendre coefficient is: 0
The 5 th Legendre coefficient is: $\frac{11}{16}$
The 6 th Legendre coefficient is: 0
The 7 th Legendre coefficient is: $-\frac{75}{128}$
The 8 th Legendre coefficient is: 0
The 9 th Legendre coefficient is: $\frac{133}{256}$
The 10 th Legendre coefficient is: 0
So the first several terms of the Legendre series are:

$$
f(x)=\frac{3}{2} P_{1}-\frac{7}{8} P_{3}+\frac{11}{16} P_{5}-\ldots
$$

4. Following the discussion in class and in the classnote, we write the potential at O as :

$$
\mathrm{V}=\frac{2 \mathrm{kq}}{\mathrm{r}}-\frac{\mathrm{kq}}{\mathrm{r}_{1}}-\frac{\mathrm{kq}}{\mathrm{r}_{2}}=\mathrm{kq}\left(\frac{2}{\mathrm{r}}-\left(\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}\right)\right)
$$

Note carefully how the signs of the charges are included in this expression. We know from class that we can write $1 / r_{1}$ and $1 / r_{2}$ in terms of the law of cosines, and then use Maclaurin series to show that these terms generate the Legendre polynomials. Using results from class, we get:

$$
\begin{gathered}
\frac{1}{\mathrm{r}_{1}}=\frac{1}{\mathrm{r}} \sum_{\mathrm{m}=0}^{\infty} \mathrm{P}_{\mathrm{m}}(\cos \theta)(\mathrm{a} / \mathrm{r})^{\mathrm{m}} \\
\frac{1}{\mathrm{r}_{2}}=\frac{1}{\mathrm{r}} \sum_{\mathrm{m}=0}^{\infty}(-1)^{\mathrm{m}} \mathrm{P}_{\mathrm{m}}(\cos \theta)(\mathrm{a} / \mathrm{r})^{\mathrm{m}}
\end{gathered}
$$

Remember that the $(-1)^{m}$ arises from the $\cos (\pi-\theta)$ term in the distance expression for r_{2}.

The expression for potential becomes:

$$
\mathrm{V}=\frac{\mathrm{kq}}{\mathrm{r}}\left[2-\left[\sum_{\mathrm{m}=0}^{\infty} \mathrm{P}_{\mathrm{m}}(\cos \theta)(\mathrm{a} / \mathrm{r})^{\mathrm{m}}+\sum_{\mathrm{m}=0}^{\infty}(-1)^{\mathrm{m}} \mathrm{P}_{\mathrm{m}}(\cos \theta)(\mathrm{a} / \mathrm{r})^{\mathrm{m}}\right]\right]
$$

Here, the odd terms in the series sum to zero, leaving us with even terms:

$$
\mathrm{V}=\frac{\mathrm{kq}}{\mathrm{r}}\left[2-\left(2 \mathrm{P}_{0}(\cos \theta)(\mathrm{a} / \mathrm{r})^{0}+2 \mathrm{P}_{2}(\cos \theta)(\mathrm{a} / \mathrm{r})^{2}+2 \mathrm{P}_{4}(\cos \theta)(\mathrm{a} / \mathrm{r})^{4}+\ldots\right)\right]
$$

We can simplify this expansion a bit more by focusing on the term $2 P_{0}(\cos \theta)(a / r)^{0}$. Since P_{0} is 1 and since $(a / r)^{0}$ is also 1 , the expansion simplifies to:

$$
\begin{gathered}
\mathrm{V}=\frac{\mathrm{kq}}{\mathrm{r}}\left[2-\left(2+2 \mathrm{P}_{2}(\cos \theta)(\mathrm{a} / \mathrm{r})^{2}+2 \mathrm{P}_{4}(\cos \theta)(\mathrm{a} / \mathrm{r})^{4}+\ldots\right)\right] \\
=2 \frac{\mathrm{kq}}{\mathrm{r}} \sum_{\mathrm{m}=2}^{\infty} \mathrm{P}_{\mathrm{m}}(\cos)(\mathrm{a} / \mathrm{r})^{\mathrm{m}} \text { for even values of } \mathrm{m} .
\end{gathered}
$$

The leading term in the expansion is then

$$
2 \frac{\mathrm{kq}}{\mathrm{r}}\left(\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)(\mathrm{a} / \mathrm{r})^{2}\right)=\frac{\mathrm{kq} \mathrm{a}^{2}}{\mathrm{r}^{3}}\left(3 \cos ^{2} \theta-1\right)
$$

an equation familiar to you from electrodynamics, where q is the charge, a is the separation between charges, $r(\gg a)$ is the distance from the origin to the observer, θ is the angle between the observer and the quadrupole's center, and the constant k is $1 /\left(4 \pi \epsilon_{o}\right)$ where ϵ_{o} is the permittivity of free space.

