
PHYS 301
HOMEWORK #14

Due : 2 May 2016
This is an optional homework, your grade will not be effected if you do not submit this homework.  

If you do submit it, turn it in no later than 5 pm in my office (Cudahy 404).  Your grade on this 

homework will replace your lowest homework score of the semester.   

1.  Problem 11.94

Let' s think about this problem physically.  If a linear bar starts out at the same temperature every-

where, then there is no temperature gradient and there is no reason for the temperature to change at 

all.  Therefore, we should expect that the temperature will always be described as u (x, t) = 0.  

Now, let' s solve it in a more rigorous way.  We start with the equation of heat diffusion :

∂u

∂ t
= α

∂2 u

∂x2

Substituting the trial solution u(x,t) = X(x)T(t)

X T' = α X'' T

Dividing by the solution separates the variables:

T'

T
= α

X''

X

It will be algebraically easier to move the α to the T side, so we obtain:

X''

X
= -k2 (only the trig solutions will satisfy the boundary conditions)

so that X = A cos kx + B sin kx.  The condition that u(0,t) = 0 implies that A = 0, and u(L,t) = 0 

requires that k = n π/L.  The T solution becomes:

1

α

T'

T
= - k2 ⇒ T' = -α n2 π2 t L2

which has the solution :

T = C e-α n2 π2 t/L2

Summing over the normal modes of u(x,t) = X(x)T(t):

u (x, t) = Σ
n=1

∞
Cn sin (n π x /L) e-α n2 π2 t/L2



Now, we set t = 0 and employ the initial condition, u (x, 0) = 0 :

u (x, 0) = 0 = Σ
n=1

∞
Cn sin (n π x /L)

Things might seem anti-climactic at this point; all the C coefficients will be zero, which means that 

u(x,t) = 0, the trivial solution.

2. Problem 11.96

This problem is very similar to problem #4 of HW 13.  The principal difference is that the plate has 

a finite length (it is not semi-infinite).  Also, the bottom edge is at zero and the top edge is held at a 

temperature u0.  If necessary, refer to problem 3, HW 13 to review why the general solution is: 

T (x, y) = (A cos k x + B sin k x) C ek y + D e-k y

Unlike the earlier problem, we cannot just set C = 0  since the plate is not infinite in length.  We are 

familiar with the boundary conditions on the vertical sides, and they require that A = 0 and k = n 

π / xf  (where xf  is the width of the plate).  This allows us to write the solution in the form: 

T (x, y) = sin (n π x / xf) C en π y/xf +D e-n π y/xf

The boundary condition on the bottom edge, T(x,0) = 0 implies:

T (x, 0) = sin (n π x / xf) (C+D) = 0 ⇒ C = - D

Substituting this into the solution gives:

T (x, y) = C sin (n π x / xf) en π y/xf - e- n π y/xf = C sin (n π x / xf) sinh (n π y / xf)

Summing over all normal modes:

T (x, y) = Σ
n=1

∞
Cn sin (n π x / xf) sinh (n π y / xf) (1)

Applying the boundary condition on the upper edge:

T (x, yf) = uo = Σ
n=1

∞
Cn sin (n π x / xf) sinh (n π yf / xf)

Note carefully the subscripts in the sinh expression.  We recognize this as the Fourier sine series for 

uo, and the Fourier coefficient will be equal to Cn sinh(n π yf / xf ).  Solving for the Fourier coeffi-

cient we get:

bn = sinh (n π yf )/ xf Cn =
2

xf


0

xf

uo sin (n π x / xf) dx =
2 uo

xf
-

xf

n π
cos (n π x / xf)

0

xf

=
-2 uo

n π
[cos (n π) - 1] = 

0, n even
4 u0 / n π, n odd

This means that the Cn coefficients that we need in eq. (1) are:

Cn =
bn

sinh (n π yf / xf)
=

4 uo

n π sinh (n π yf / xf)
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and our complete solution is:

T (x, y) =
4 uo

π
Σ
∞ sin (n π x / xf) sinh (n π y / xf)

n sinh (n π yf / xf)
, n odd

3. Problem 11.146 (submit any Mathematica output with your answers)

a) The potential inside a sphere of radius a is given by (see text 11.7.3):

V (r, θ) = Σ
m=0

∞
Am rm Pm (cos θ)

where the coefficients Am are defined by

Am =
2 m+ 1

2 am 
0

π

V (θ) Pm (cos θ) sin θ dθ

(I have also denoted these coefficients as cm in class. The

integral above is the same as
-1

1
V (x) Pm(x) dx when you set x =

cos θ (so dx = - sin θ dθ and be careful also to transform also the limits of integration.)

We are given the potential function on the surface of the sphere of radius a :

V (θ) = 
c, 0 < θ < π / 2
0, π / 2 < θ < π

(We can also write this as a function of x. If we make use of the substitution x = cos θ,

we can write this as a function of x) :

V (x) = 
c, 0 < x < 1
0, -1 < x < 0

and our coefficients become simply :

Am =
2 m+ 1

2 am 
0

1
c Pm (x) dx

We can compute the coefficients (and I will print out only the first eleven):

Clear[A, c, a]

A[m_] := A[m] = 2 m + 1  2 am Integrate[c LegendreP[m, x], {x, 0, 1}]

Do[Print[A[m]], {m, 0, 10}]

phys301-2016hw14s.nb     3



c

2

3 c

4 a

0

-
7 c

16 a3

0

11 c

32 a5

0

-
75 c

256 a7

0

133 c

512 a9

0

(We would have gotten the same results for these coefficients if we integrated over angle; printint 

out only the first five coefficients (note carefully the limits of integration)) :

Clear[a, A, c]

A[m_] := 2 m + 1  2 am Integratec LegendreP[m , Cos[θ]] Sin[θ], θ, 0, π  2

Do[Print[A[m]], {m, 0, 4}]

c

2

3 c

4 a

0

-
7 c

16 a3

0

Getting back to the problem The first few terms of the Legendre expansion are then:

V (r, θ) =
c

2
Po (cos θ) +

3 c

4


r

a
 P1 (cos θ) -

7 c

16


r

a


3
P3 (cos θ) +

11 c

32


r

a


5
P5 (cos θ) + ...

Remember that this is the expansion for the potential inside the sphere, so r/a ≤ 1.  

b)  At the surface, r = a, so the potential can be written:

V (a, θ) = Σ
m=0

∞
Am am Pm (cos θ)

To plot the potential, we will need to provide a specific numerical value for c.  We can write this as:
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Clear[v, a, c]

c = 0.5;

v[θ_] := v[θ] = SumA[m] am LegendreP[m, Cos[θ]], {m, 0, 20}

Plot[v[θ], {θ, 0, π}]
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And you can see that this function matches the surface potential well; the potential is 0.5 for 0<θ< 

π/2 and zero for the second half of the interval.  Since we set r = a, all the (r / a)m terms are equal to 

1.

4.  A string of length L  is fixed at the ends and has zero initial velocity.  Its initial position is given 

by :

y (x, 0) =

4 h x /L, 0 < x < L / 4
2 h- 4 h x /L, L / 4 < x < L / 2
0, L / 2 < x < L

0.2 0.4 0.6 0.8 1.0
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0.2

0.3

0.4

(The graph above used the specific values h = 0.4 and L = 1; this was necessary to get Mathematica 

to produce a graph, your answers should just use the variables h and L).  Solve the wave equation 

for this set of boundary and initial conditions.

We worked in detail in class the general solution to the wave equation in Cartesian coordinates (see 

eq 11.4.14 in the text).  Having done all that work, we can make use of that result here.  All we need 

to do are find the values of the coefficients Cn and Dn using our initial conditions for the shape and 
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velocity of the string.  In eq. 11.4.14, g(x) is the initial velocity of the string, and f(x) is the initial 

shape.  Since we are told the string starts at rest, g(x) =0 thus all the Cn are zero.  We find Dn by 

setting t = 0 in the general solution and applying the boundary condition:

y (x, 0) = Σ
n=1

∞
Dn sin (n π x /L) = f (x)

Thus, we can find the Dn coefficients by computing the Fourier integral :

Dn =
2

L


0

L
f (x) sin (n π x /L) dx

For the function given, we obtain:

Dn =
2

L


0

L/4 4 h x

L
sin (n π x /L) dx +

L/4

L/2
(2 h - 4 h x /L) sin (n π x /L) dx

We can use Mathematica to find that:

Dn =
64 h cos (n π / 8) sin3 (n π / 8)

n2 π2

And the complete solution is:

y (x, t) =
64 h

π2
Σ

n=1

∞ cos (n π / 8) sin3 (n π / 8) sin (n π x /L) cos (n π v t /L)

n2

To see how the string’s shape evolves over time, type the following code into your notebook and 

view using a slow speed:

Clear[h, L, d, v]

(*We have to provide some arbitrary but reasonable

values to allow Mathematica to produce a plot *)

h = 0.4; L = 1; v = 2;

d[n_] := 64 h Cosn π  8 Sinn π  8^3  n^2 π^2

Manipulate[

Plot[Sum[d[n] Sin[n π x / L] Cos[n π v t / L], {n, 1, 21}], {x, 0, L}], {t, 0, 4 π}]

The next two problems are very similar to each other and also to #3 on this assignment.  We use 

exactly the same equations and techniques to find the temperature inside the sphere as we did to find 

the potential (since both T and V satisfy Laplace’s equation.  

5.  Find the steady state temperature inside a sphere of radius 1 if the surface temperature is 35 

cos4θ (assume azimuthal symmetry).

We can express the boundary condition here as :

T (1, θ) = 35 cos4 θ = 35 x4 where x = cos θ

Using the solution to Laplace’s equation in spherical coordinates, we can write the internal tempera-

ture is:
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T (r, θ) = Σ
m=0

∞
Am rm Pm (cos θ)

where the coefficients Am are given by:

Am =
2 m+ 1

2 am 
0

1
35 x4 Pm (x) dx

Since our boundary condition is an even function, we expect that our expansion will consist only of 

even terms; all the odd coefficients will be zero.  Setting the radius a = 1, we find the first several 

coefficients:

Clear[A]

A[m_] := 2 m + 1  2 Integrate35 x4 LegendreP[m, x], {x, -1, 1}

Do[Print[A[m]], {m, 0, 6}]

7

0

20

0

8

0

0

We can see that all the odd coefficients are zero, and the Legendre expansion truncates at the m = 4 

term; we can write the interior temperature as the series (remember that a = 1):

T (r, θ) = A0 r0 Po (cos θ) +A2 r2 P2 (cos θ) +A4 r4 P4 (cos θ)

= 7+ 20 r2
3 cos2 θ - 1

2
+ 8 r4

35 cos4 θ - 30 cos2 θ+ 3

8

We can try to see what the temperature distribution looks like by using Plot3D:
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Clear[temp, r, θ]

temp[r_, θ_] := 7 + 10 r2 3 Cos[θ]^2 - 1 + r4 35 Cos[θ]^4 - 30 Cos[θ]^2 + 3

Plot3D[temp[r, θ], {r, 0, 1}, {θ, 0, π}]

The radius is plotted along the lower edge, θ along the right edge, and temperature is the vertical 

scale on the left.  Keep in mind we are mapping a sphere to a rectangular plot.  

6. Find the steady state temperature inside a sphere of radius 1 if the surface temperature is :

T (1, θ) = 
100, 0 < θ < π / 3
0, otherwise

This boundary condition means that the temperature is 100 everywhere on the surface between the 

North Pole and latitude 60oN, and zero everywhere south of that. We find our coefficients from the 

integral:

Am =
(2 m+ 1)

2


1/2

1
100 · Pm (x) dx

These are our limits of integration since cos 0 = 1 and cos π/3 = 1/2  We can print out the first six 

terms of the temperature

Clear[A, r]

A[m_] := 2 m + 1  2 Integrate100 LegendreP[m, x], x, 1  2, 1

series = SumA[m] rm LegendreP[m, Cos[θ]], {m, 0, 5};

Print[series]

25 +
225

4
r Cos[θ] +

375

16
r2 -1 + 3 Cos[θ]2 +

525

128
r3 -3 Cos[θ] + 5 Cos[θ]3 -

3375 r4 3 - 30 Cos[θ]2 + 35 Cos[θ]4

1024
-
15675 r5 15 Cos[θ] - 70 Cos[θ]3 + 63 Cos[θ]5

4096
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Notice that the temperature is 25o at the center of the sphere; we can try to visualize the temperature 

using a two dimensional contour plot:

ContourPlot[series, {r, 0, 1}, {θ, 0, π},

PlotLegends → Automatic, ContourLabels → True]
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In the contour plot above, the radius is along the bottom edge, and the polar angle, measured in 

radians, is on the left vertical axis.
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