PHYS 301

HOMEWORK \#10-- SOLUTIONS

1. Solve the PDE

$$
\frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial^{2} y}{\partial x^{2}}+y=0
$$

subject to:

$$
y(0, t)=y(1, t)=0
$$

Our trial solution will be $y=X(x) T(t)$, when we substitute it into our original differential equation we obtain :

$$
\text { X T" }-\mathrm{X}^{\prime \prime} \mathrm{T}+\mathrm{XT}=0
$$

Dividing through by the solution gives:

$$
\frac{T^{\prime \prime}}{T}-\frac{X^{\prime \prime}}{X}+1=0
$$

Following the hint in the problem, we group terms this way:

$$
\frac{T^{\prime \prime}}{T}+1=\frac{X^{\prime \prime}}{X}
$$

b) The left side does not depend on X. Therefore, if I change X the left side will not change. Since this equation must hold true for all X and T , the right side cannot change, thus the right side must equal a constant. The same logic explains why the left side equals a constant.
c) We are told to set

$$
\frac{X^{\prime \prime}}{X}=P
$$

If P is a constant, our differential equation gives exponential solutions, which cannot fit the boundary conditions (BCs) ($\mathrm{y}=0$ at both edges). If $\mathrm{P}=0$, the solution is a straight line, which can match the boundary conditions only if the line has zero slope, i.e., the trivial solution. If P is negative, the solutions will be sinusoidal, and those can fit the BCs. Thus we have :

$$
\frac{X^{\prime \prime}}{X}+P=-k^{2} \Rightarrow X=A \cos k x+B \sin k x
$$

d) If $\mathrm{y}=0$ at $\mathrm{x}=0$, we know that $\mathrm{y}(0, \mathrm{t})=\mathrm{A} \cos 0+0=0$. This tells us $\mathrm{A}=0$
e) If $y(1, t)=0 \Rightarrow \sin (k)=0 \Rightarrow k=n \pi$
f) The T equation becomes :

$$
\begin{gathered}
\frac{\mathrm{T}^{\prime \prime}}{\mathrm{T}}+1=-\mathrm{k}^{2}=-\mathrm{n}^{2} \pi^{2} \\
\frac{\mathrm{~T}^{\prime \prime}}{\mathrm{T}}=-\left(1+\mathrm{n}^{2} \pi^{2}\right) \Rightarrow \mathrm{T}=\mathrm{C} \cos \sqrt{\mathrm{n}^{2} \pi^{2}+1}+\mathrm{D} \sin \sqrt{\mathrm{n}^{2} \pi^{2}+1}
\end{gathered}
$$

g) We are given no initial condition so cannot compute values for the Cs and Ds, the complete solution is then a sum over all possible values of n :

$$
y(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x)\left(C_{n} \cos \sqrt{n^{2} \pi^{2}+1}+D_{n} \sin \sqrt{n^{2} \pi^{2}+1}\right)
$$

2. Solve the PDE :

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{t}}=\mathrm{c}^{2} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}
$$

subject to :

$$
y(0, t)=y(L, t)=0 \text { and } y(x, 0)=\sin (\pi x / L)
$$

The steps should be familiar now, substitute the trial solution $(\mathrm{X}(\mathrm{x}) \mathrm{T}(\mathrm{t})$) into the original PDE, divide by the solution, and separate variables, leaving us with:

$$
\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=\mathrm{c}^{2} \frac{\mathrm{X}^{\prime \prime}}{\mathrm{X}}
$$

Let' s isolate the X terms, so we have :

$$
\frac{1}{\mathrm{c}^{2}} \frac{\mathrm{~T}^{\prime}}{\mathrm{T}}=\frac{\mathrm{X}^{\prime \prime}}{\mathrm{X}}=\text { constant }
$$

Because of our BCs, we know that we must have a sinusoidal solution in X , so the constant must be negative, and we have:

$$
X=A \cos k x+B \sin k x
$$

and the T equation gives us:

$$
\mathrm{T}=\mathrm{Ce}^{-\mathrm{c}^{2} \mathrm{k}^{2} \mathrm{t}}
$$

Following a pattern that should be familiar :

$$
\begin{gathered}
y(0, t)=0 \Rightarrow A=0 \\
y(L, t)=0 \Rightarrow k=n \pi / L
\end{gathered}
$$

and our solution becomes the sum over all possible normal modes:

$$
y(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x / L) e^{-c^{2} n^{2} \pi^{2} t / L}
$$

Now using the initial condition:

$$
y(x, 0)=\sin (\pi x / L)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x / L)
$$

And we see that this is just a Fourier sine series. Note carefully though that the function we have to fit is a sine wave, so that we can easily fit this condition with $B_{1}=1$ and all other $B_{n}=0$. Our solution then is the single term:

$$
\mathrm{y}(\mathrm{x}, \mathrm{t})=\sin (\pi \mathrm{x} / \mathrm{L}) \mathrm{e}^{-\mathrm{c}^{2} \mathrm{n}^{2} \pi^{2} \mathrm{t} / \mathrm{L}}
$$

3. We are asked to find the solution for the potential of a sphere of radius a whose surface potential is given by :

$$
\mathrm{V}_{\mathrm{o}}(\theta)=\sin \theta
$$

We are directed to the solutions worked out in the text (and in classnotes). The potential in (or on) a sphere of radius a is given by:

$$
\mathrm{V}(\mathrm{r}, \theta)=\sum_{\mathrm{m}=0}^{\infty} \mathrm{A}_{\mathrm{m}} \mathrm{r}^{\mathrm{m}} \mathrm{P}_{\mathrm{m}}(\cos \theta)
$$

where r is the distance from the center of the sphere and A_{m} are the coefficients defined as:

$$
\mathrm{A}_{\mathrm{m}}=\frac{2 \mathrm{~m}+1}{2 \mathrm{a}^{\mathrm{m}}} \int_{0}^{\pi} \mathrm{V}_{\mathrm{o}}(\theta) \mathrm{P}_{\mathrm{m}}(\cos \theta) \sin \theta \mathrm{d} \theta
$$

(this equation is similar to the one used in classnotes if you set $x=\cos \theta$ and $d x=-\sin \theta d \theta$).
To make matters simpler without losing any physics, I just set the radius $=1$, so for our particular surface potential function we can write:

$$
\mathrm{A}_{\mathrm{m}}=\frac{2 \mathrm{~m}+1}{2} \int_{0}^{\pi} \sin ^{2} \theta \mathrm{P}_{\mathrm{m}}(\cos \theta) \mathrm{d} \theta
$$

The short Mathematica program below will plot out the 20th partial sum of the solution for the potential and superimpose it over the curve $\sin \theta$:

```
Clear[a, potential]
a[m_] := a[m] = ((2m+1)/2) Integrate[Sin[0]^2 LegendreP[m, Cos[0]],{0,0, \pi}]
potential[0_] := Sum[a[m] LegendreP[m, 更os[0]],{m,0, 20}]
Plot[{Sin[x], potential[x]}, {x, 0, \pi}, PlotLegends }->\mathrm{ Automatic]
Out[84]= (%)
```

I' m not sure what error the text was expecting; perhaps forgetting to start the sum at zero, perhaps forgetting to use LegendreP $[\mathrm{m}, \operatorname{Cos}[\theta]]$ rather than Legendre $[\mathrm{m}, \theta]$. Anyway, the above should work.If you look carefully at $\theta=0$ and π, the computed potential curve deviates slightly from the sin curve.
4. The problem is identical to the one worked out in detail in the text (pp 581-584) except for the BC on the top of the cube. We can thus write in complete generality eq. 11.5 .4 from the text :

$$
\begin{gathered}
\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum_{\mathrm{n}=1}^{\infty} \sum_{\mathrm{m}=1}^{\infty} \mathrm{A}_{\mathrm{m} \mathrm{n}} \sin (\mathrm{~m} \pi \mathrm{x} / \mathrm{L}) \sin (\mathrm{n} \pi \mathrm{y} / \mathrm{L})\left(\mathrm{e}^{\alpha \mathrm{z} / \mathrm{L}}-\mathrm{e}^{-\alpha \mathrm{z} / \mathrm{L}}\right) \\
\text { where } \alpha=\pi \sqrt{\mathrm{n}^{2}+\mathrm{m}^{2}}
\end{gathered}
$$

We now use our BC when $\mathrm{z}=\mathrm{L}$, and we get:

$$
\begin{gathered}
\sin (\pi x / L)+\sin (2 \pi y / L)+\sin (2 \pi x / L) \sin (\pi y / L)= \\
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{m n} \sin (m \pi x / L) \sin (n \pi y / L)\left(e^{\alpha}-e^{-\alpha}\right)
\end{gathered}
$$

As in an earlier problem, our BC consists of sin waves. This means that we can completely specify our solution by setting $\mathrm{m}=1, \mathrm{n}=2$ and also $\mathrm{m}=2, \mathrm{n}=1$. This gives us a value of A_{mn} :

$$
\mathrm{A}_{\mathrm{mn}}\left(\mathrm{e}^{\sqrt{5} \pi}-\mathrm{e}^{-\sqrt{5} \pi}\right)=1 \Rightarrow \mathrm{~A}_{\mathrm{mn}}=\frac{1}{\mathrm{e}^{\sqrt{5} \pi}-\mathrm{e}^{-\sqrt{5} \pi}}
$$

Since there are only two non-zero terms ($m=1, n=2$ and $m=2, n=1$), our total solution is:
$V(x, y, z)=\frac{e^{\sqrt{5} \pi z / L}-e^{-\sqrt{5} \pi z / L}}{e^{\sqrt{5} \pi}-e^{-\sqrt{5} \pi}}[\sin (\pi x / L) \sin (2 \pi y / L)+\sin (2 \pi x / L) \sin (\pi y / L)]$

