PHYS 301
HOMEWORK #10-- SOLUTIONS

1. Solve the PDE

subject to:

y@O, 9=y, )=0

Our trial solution will be y = X (x) T (t), when we substitute it into our original differential equation

we obtain :
XT"-X"T+XT =0

Dividing through by the solution gives:

TH XH
— - +1=0
T X

Following the hint in the problem, we group terms this way:
'I‘H XH

+1 =

T X

b) The left side does not depend on X. Therefore, if I change X the left side will not change. Since

this equation must hold true for all X and T, the right side cannot change, thus the right side must

equal a constant. The same logic explains why the left side equals a constant.

¢) We are told to set
XH
X

If P is a constant, our differential equation gives exponential solutions, which cannot fit the bound-

=P

ary conditions (BCs) (y = 0 at both edges). If P =0, the solution is a straight line, which can match
the boundary conditions only if the line has zero slope, i.e., the trivial solution. If P is negative, the

solutions will be sinusoidal, and those can fit the BCs. Thus we have :

+P = —-k*® 2 X = Acoskx + Bsinkx

d) Ify=0at x =0, we know that y (0,t)=A cos 0 +0=0. Thistellsus A=0
e)Ify(l,t)=0=>sin(k)=0=>k=nnx
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f) The T equation becomes :

—+1= -k = —n’a

T?": —(1+n2772) >T= Ccosx/n2n2+1 + Dsin\/n2ﬂ2+l

g) We are given no initial condition so cannot compute values for the Cs and Ds, the complete

solution is then a sum over all possible values of n :

y(x,t) = Elsin(nﬂx)(cncosvnzﬂ2+l +Dnsin\/n27r2+1 )
n=

2. Solve the PDE :
9y _ o’y

=c° —
ot 0x?
subject to :
y(O,t)=y(L,t) = 0Oandy(x,0) = sin(7rx/L)

The steps should be familiar now, substitute the trial solution (X(x)T(t)) into the original PDE,

divide by the solution, and separate variables, leaving us with:

T! XN
— -2
T X
Let' s isolate the X terms, so we have :
1 T X"
— — = — = constant
2 T

Because of our BCs, we know that we must have a sinusoidal solution in X, so the constant must be
negative, and we have:

X = Acoskx + Bsinkx
and the T equation gives us:
T = Ce @kt
Following a pattern that should be familiar :
yO0,) =0=>A =0
y(L,t) =0=k =nn/L
and our solution becomes the sum over all possible normal modes:

yi9 = C>Z(:)1BnSirl(n7rx/L)e‘cznzﬂzt/L
n=

Now using the initial condition:

y(x,0) = sin(rx/L) = oilensin(nﬂx/L)
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And we see that this is just a Fourier sine series. Note carefully though that the function we have to
fit is a sine wave, so that we can easily fit this condition with B; = 1 and all other B, =0. Our solu-
tion then is the single term:

—c2n?a?t/L

y(x,t) = sin(rx/L)e

3. We are asked to find the solution for the potential of a sphere of radius a whose surface potential
is given by :

V,(6) = sin@
We are directed to the solutions worked out in the text (and in classnotes). The potential in (or on) a
sphere of radius a is given by:

V(6 = £ Ant" P (cos6)

where r is the distance from the center of the sphere and 4,, are the coefficients defined as:

2m+1 7 .
A, = f Vo, (6) Py, (cos 0) sin 6 d6
2 am 0

(this equation is similar to the one used in classnotes if you set x = cos § and dx = - sin 6 d6).

To make matters simpler without losing any physics, I just set the radius = 1, so for our particular
surface potential function we can write:
2m+1

Ay = f sin? 6 Py, (cos 0) d
o

The short Mathematica program below will plot out the 20th partial sum of the solution for the

potential and superimpose it over the curve sin 6:
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ne1= Clear[a, potential]
afm_] :=a[m] = ((2m+ 1) /2) Integrate[Sin[6] *2 LegendreP[m, Cos[6]], {6, 0, 7}]
potential[6_] := Sum[a[m] LegendreP[m, Cos[6]], {m, 0, 20}]

Plot[{Sin[x], potential[x]}, {x, 0, 7}, PlotLegends -» Automatic]
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I' m not sure what error the text was expecting; perhaps forgetting to start the sum at zero, perhaps
forgetting to use LegendreP[m, Cos[#]] rather than LegendreP[m, #]. Anyway, the above should
work.If you look carefully at # = 0 and =, the computed potential curve deviates slightly from the sin

curve.

4. The problem is identical to the one worked out in detail in the text (pp 581 - 584) except for the
BC on the top of the cube. We can thus write in complete generality eq. 11.5 .4 from the text :

V(X,v,2z) = 3 DZOIAmnsin(mﬂx/L)sin(n:ry/L)(e"‘Z/L — e_“Z/L)

n=1 m=

2

where @ = 7 n? +m?

We now use our BC when z =L, and we get:

sin(mx/L)+sin(2Qay/L)+sin2ax/L)sin(ry/L) =
3 ElAmnsin(mﬂx/L) sin(n7ry/L) (¥ —e™)

n=1 m=

As in an earlier problem, our BC consists of sin waves. This means that we can completely specify

our solution by setting m=1, n =2 and also m=2, n=1. This gives us a value of Apmy:

1
A (V3 7=e™V57) =1 5 Apy = ——
V5 _oVin

Since there are only two non-zero terms (m=1,n=2 and m=2,n=1), our total solution is:



phys301-2017hw10s.nb | 5

oVs mz/L _ o-V5 nz/L
VX, y,2z) = i L)sin(2 L in (2 L)si L
(X, y,2) e\/?ﬂ 3 e_‘/?ﬂ [sin(rx/L)sin(2ry/L)+sin(2xx/L)sin(ry/L)]




