2. Solution: We need to convert all terms, both the scalar and unit vector, into Cartesian coordinates. To convert the scalar term, $1 / \mathrm{r}$, recall that r is the distance from the origin so that :

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

We use the transformation equations and results from the last homework to write the unit vector r :

$$
\begin{gather*}
\mathrm{x}=\mathrm{r} \sin \theta \cos \theta \tag{1}\\
\mathrm{y}=\mathrm{r} \sin \theta \sin \phi \tag{2}\\
\mathrm{z}=\mathrm{r} \cos \theta \tag{3}
\end{gather*}
$$

and :

$$
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}
$$

If we divide each of the transformation equations (eqs. 1-3) by r , we see that:

$$
\frac{\mathrm{x}}{\mathrm{r}}=\sin \theta \cos \theta ; \quad \frac{\mathrm{y}}{\mathrm{r}}=\sin \theta \sin \phi ; \quad \frac{\mathrm{z}}{\mathrm{r}}=\cos \theta
$$

We can use these results to rewrite \hat{r} :

$$
\hat{\mathbf{r}}=\frac{1}{\mathrm{r}}(\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}})
$$

so that:

$$
\frac{1}{\mathrm{r}} \hat{\mathbf{r}}=\frac{1}{\mathrm{r}} \cdot \frac{1}{\mathrm{r}}(\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}})=\frac{1}{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}(\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}})
$$

3. Solution: Here we are asked to find the work done by a force over a specific contour. This means we want to evaluate the line integral :

$$
\mathrm{W}=\oint \mathbf{F} \cdot \mathrm{d} \mathbf{l}
$$

where we need to remember to convert both the force and line element to polar coordiantes.
The function will transform as:

$$
\begin{gathered}
\mathbf{f}=2(\rho \sin \phi)(\cos \phi \hat{\boldsymbol{\rho}}-\sin \phi \hat{\boldsymbol{\phi}})-(\rho \cos \phi)(\sin \phi \hat{\boldsymbol{\rho}}+\cos \phi \hat{\boldsymbol{\phi}})= \\
\rho \sin \phi \cos \phi \hat{\boldsymbol{\rho}}-\rho\left(2 \sin ^{2} \phi+\cos ^{2} \phi\right) \hat{\boldsymbol{\phi}}
\end{gathered}
$$

and the line element becomes:

$$
\mathrm{d} \mathbf{l}=\mathrm{d} \rho \hat{\boldsymbol{\rho}}+\rho \mathrm{d} \phi \hat{\boldsymbol{\phi}}
$$

The line integral becomes:

$$
\begin{gathered}
\mathrm{W}=\int_{0}^{\pi}\left[\rho \sin \phi \cos \phi \hat{\boldsymbol{\rho}}-\rho\left(2 \sin ^{2} \phi+\cos ^{2} \phi\right) \hat{\boldsymbol{\phi}}\right] \cdot(\mathrm{d} \rho \hat{\boldsymbol{\rho}}+\rho \mathrm{d} \phi \hat{\boldsymbol{\phi}}) \\
=\int_{0}^{\pi} \rho(\sin \phi \cos \phi) \mathrm{d} \rho-\rho^{2}\left(1+\sin ^{2} \phi\right) \mathrm{d} \phi
\end{gathered}
$$

Since our contour is the circle $\rho=2, \mathrm{~d} \rho=0$ (since ρ is a constant along the contour), and our integral becomes simply:

$$
\mathrm{W}=-4 \int_{0}^{\pi}\left(1+\sin ^{2} \phi\right) \mathrm{d} \phi=-6 \pi
$$

4. Solution: We begin with the transformation equations:

$$
\begin{aligned}
& x=a \cosh u \cos v \\
& y=a \sinh u \sin v
\end{aligned}
$$

$\mathrm{z}=\mathrm{z}$

Taking differentials :

$$
\begin{gathered}
d x=a(\sinh u \cos v d u-\cosh u \sin v d v) \\
d y=a(\cosh u \sin v d u+\sinh u \cos v d v) \\
d z=d z
\end{gathered}
$$

Squaring and adding:

$$
\begin{gathered}
d s^{2}= \\
d x^{2}+d y^{2}+d z^{2}=a^{2}\left(\sinh ^{2} u \cos ^{2} v(d u)^{2}-2 \sinh u \cosh u \cos v \sin v d u d v+\cosh ^{2} u \sin ^{2} v(d v)^{2}\right) \\
+a^{2}\left(\cosh ^{2} u \sin ^{2} v(d u)^{2}+2 \cosh u \sin v \sinh u \cos v d u d v+\sinh ^{2} u \cos ^{2} v(d v)^{2}\right) \\
+(d z)^{2}
\end{gathered}
$$

Note that all the mixed derivative terms cancel, indicating that this is in fact an orthogonal transformation.

Summing terms and grouping, we get:

$$
\begin{aligned}
& (d s)^{2}=a^{2}\left(\sinh ^{2} u \cos ^{2} v+\cosh ^{2} u \sin ^{2} v\right)(d u)^{2} \\
& \quad+a^{2}\left(\cosh ^{2} u \sin ^{2} v+\sinh ^{2} u \cos ^{2} v\right)(d v)^{2}+(d z)^{2}
\end{aligned}
$$

The scale factor for z is trivially 1 . We can simplify the parenthetical expressions by recalling:

$$
\cosh ^{2} x=1+\sinh ^{2} x
$$

and obtain for h_{u} :

$$
\begin{gathered}
a^{2}\left(\sinh ^{2} u \cos ^{2} v+\left(1+\sinh ^{2} u\right) \sin ^{2} v\right)(d u)^{2} \\
=\left(\sinh ^{2} u\left(\cos ^{2} v+\sin ^{2} v\right)+\sin ^{2} v\right)(d u)^{2} \\
\Rightarrow h_{u}=a \sqrt{\sinh ^{2} u+\sin ^{2} v}
\end{gathered}
$$

Using the same identity, you will find that $h_{v}=h_{u}$.
5. Solution: We begin with our original equation :

$$
\ddot{\mathrm{r}}-\frac{\mathrm{h}^{2}}{\mathrm{r}^{3}}=\frac{-\mathrm{GM}}{\mathrm{r}^{2}}
$$

and our goal is to transform this from an equation in terms of $r(t)$ to an equation in terms of $u(\theta)$ where $u=1 / r$. We will need to make use of the chain rule and also the result:

$$
\mathrm{r}^{2} \dot{\theta}=\mathrm{h} \Rightarrow \dot{\theta}=\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\mathrm{h}}{\mathrm{r}^{2}}=\mathrm{h} \mathrm{u}^{2}
$$

Let' s focus on the most complex of these terms, the second derivative. Our goal is to convert :

$$
\frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}} \rightarrow \frac{\mathrm{~d}^{2} \mathrm{u}}{\mathrm{~d} \theta^{2}}
$$

we will need to start with the first derivative term. We can use the chain rule to write:

$$
\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{\mathrm{dr}}{\mathrm{du}} \frac{\mathrm{du}}{\mathrm{~d} \theta} \frac{\mathrm{~d} \theta}{\mathrm{dt}}=\frac{-1}{\mathrm{u}^{2}} \frac{\mathrm{du}}{\mathrm{~d} \theta}\left(\mathrm{hu}^{2}\right)=-\mathrm{h} \frac{\mathrm{du}}{\mathrm{~d} \theta} \equiv \mathrm{w}
$$

To find the second derivative, we write:

$$
\frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)=\frac{\mathrm{dw}}{\mathrm{dt}}=\frac{\mathrm{dw}}{\mathrm{~d} \theta} \frac{\mathrm{~d} \theta}{\mathrm{dt}}=-\mathrm{h} \frac{\mathrm{~d}^{2} \mathrm{u}}{\mathrm{~d} \theta^{2}} \cdot \mathrm{~h} \mathrm{u}^{2}
$$

So the original differential equation becomes:

$$
-h^{2} u^{2} \frac{d^{2} u}{d \theta^{2}}-h^{2} u^{3}=-G M u^{2}
$$

Divide through by $-h^{2} u^{2}$ and we obtain:

$$
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{~d} \theta^{2}}+\mathrm{u}=\frac{\mathrm{GM}}{\mathrm{~h}^{2}}
$$

