PHYS 301 HOMEWORK \#4

Due : 13 February 2017

Do all integrals by hand; you may check your answers via Mathematica but must show all work.

1. Show for m, n integers :

$$
\left.\left.\begin{array}{c}
\int_{-\pi}^{\pi} \sin (\mathrm{mx}) \sin (\mathrm{nx}) \mathrm{dx}= \begin{cases}0, & \mathrm{~m} \neq \mathrm{n} \\
\pi, & \mathrm{~m}=\mathrm{n}\end{cases} \\
\int_{-\pi}^{\pi} \sin (\mathrm{nx}) \cos (\mathrm{mx}) \mathrm{dx}=0
\end{array}\right] \begin{array}{ll}
0, & \mathrm{~m} \neq \mathrm{n} \\
\pi, & \mathrm{~m}=\mathrm{n} \\
2 \pi, & \mathrm{~m}=\mathrm{n}=0
\end{array}\right] . \begin{aligned}
& \cos (\mathrm{mx}) \cos (\mathrm{nx}) \mathrm{dx}=\left\{\begin{array}{l}
0
\end{array}\right.
\end{aligned}
$$

Solution : We will rewrite each integrand using the sin and cos addition formulae :

$$
\begin{aligned}
& \sin (m \pm n) x=\sin (m x) \cos (n x) \pm \sin (n x) \cos (m x) \\
& \cos (m \pm n) x=\cos (m x) \cos (n x) \mp \sin (m x) \sin (n x)
\end{aligned}
$$

a) Adding the sin addition/subtraction formulae gives:

$$
\begin{equation*}
\sin (m+n) x+\sin (m-n) x=2 \sin (m x) \cos (n x) \tag{1}
\end{equation*}
$$

This allows us to write the second integral above as:

$$
\begin{equation*}
\int_{-\pi}^{\pi} \sin (\mathrm{nx}) \cos (\mathrm{mx}) \mathrm{dx}=\frac{1}{2} \int_{-\pi}^{\pi} \sin (\mathrm{m}+\mathrm{n}) \mathrm{xdx}+\frac{1}{2} \int_{-\pi}^{\pi} \sin (\mathrm{m}-\mathrm{n}) \mathrm{xdx} \tag{2}
\end{equation*}
$$

These integrals return $\cos (p x)$ where p is an integer evaluated at π and $-\pi$. Since \cos is an even function, each integral evaluates to zero when $m \neq n$. In the case where $m=n$, the integrals become:.

$$
\int_{-\pi}^{\pi} \sin (2 \mathrm{mx}) \mathrm{dx} \text { and } \int 0 \mathrm{dx}
$$

both of which are easily (or trivially) shown to be zero.
b) If we add the cos addition/subtraction formulae, we get:

$$
\int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x=\frac{1}{2}\left[\int_{-\pi}^{\pi} \cos (m+n) x+\cos (m-n) x d x\right]
$$

These integrals return $\sin (p x)$ (where p is an integer) evaluted at π and $-\pi$; since sin is zero at those values, the integral is zero for all $\mathrm{m} \neq \mathrm{n}$. If $\mathrm{m}=\mathrm{n}$, the integral becomes

$$
\int_{-\pi}^{\pi} \cos ^{2}(m x) d x=\int_{-\pi}^{\pi}\left(\frac{1+\cos (2 x))}{2} d x=\pi\right.
$$

(we use the trig identities $\cos (2 \mathrm{x})=\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}$ and $\sin ^{2} \mathrm{x}=1-\cos ^{2} \mathrm{x}$) If $\mathrm{m}=\mathrm{n}=0, \cos (\mathrm{~m} \mathrm{x})=\cos (\mathrm{n} \mathrm{x})=1$, and the integral of 1 on this interval is 2π.
c) We subtract the subtraction/addition cos formulae and get :

$$
\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\frac{1}{2}\left[\int_{-\pi}^{\pi}(\cos (m-n) x-\cos (m+n) x) d x\right]
$$

Using prior reasining, each integral on the right returns $\sin (p x)$ on $[-\pi, \pi]$, so all these terms are zero for $\mathrm{m} \neq \mathrm{n}$. If $\mathrm{m}=\mathrm{n} \neq 0$, we have:

$$
\int_{-\pi}^{\pi} \sin ^{2}(\mathrm{mx}) \mathrm{dx}=\pi
$$

If $\mathrm{m}=\mathrm{n}=0$, the integral is zero since $\sin (0)=0$.
For the remaining problems we will use these definitions of the Fourier series:

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{gathered}
$$

and for the Fourier series:

$$
\mathrm{f}(\mathrm{x})=\mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \cos (\mathrm{n} x)+\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}} \sin (\mathrm{n} x)
$$

2. Consider the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}0, & -\pi<\mathrm{x}<0 \\ \mathrm{x}, & 0<\mathrm{x}<\pi\end{cases}
$$

Find the Fourier coefficients and then write the Fourier series both in closed form and by writing out the first three non zero terms of each series.
Solution : We find the Fourier coefficients, using integration by parts where needed :

$$
\begin{gathered}
\mathrm{a}_{\mathrm{o}}=\frac{1}{2 \pi} \int_{0}^{\pi} \mathrm{xdx}=\frac{\pi}{4} \\
\mathrm{a}_{\mathrm{n}}=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{x} \cos (\mathrm{n} x) \mathrm{dx}=\left.\frac{1}{\pi \mathrm{n}} \mathrm{x} \sin (\mathrm{n} x)\right|_{0} ^{\pi}-\frac{1}{\pi n} \int_{0}^{\pi} \sin (\mathrm{n} x) d x=\left.\frac{1}{\pi \mathrm{n}^{2}} \cos (\mathrm{n} x)\right|_{0} ^{\pi} \\
=\frac{1}{\pi \mathrm{n}^{2}}(\cos (\mathrm{n} \pi)-1)=\left\{\begin{array}{l}
0, \\
-2 / n^{2} \pi, \\
\mathrm{n} \text { even }
\end{array}\right. \\
\mathrm{b}_{\mathrm{n}}=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{x} \sin (\mathrm{n} \mathrm{x})=\frac{1}{\pi}\left[\left.\frac{-1}{\mathrm{n}} \mathrm{x} \cos (\mathrm{n} x)\right|_{0} ^{\pi}+\frac{1}{\mathrm{n}} \int_{0}^{\pi} \cos (\mathrm{nx}) \mathrm{dx}\right]
\end{gathered}
$$

The last integral goes to zero since it returns $\sin (n \mathrm{x})$, so we are left with:

$$
\mathrm{b}_{\mathrm{n}}=\frac{-1}{\mathrm{n} \pi}(\pi \cos (\mathrm{n} \pi)-0)=\frac{-1}{\mathrm{n}}(-1)^{\mathrm{n}}
$$

The Fourier series is:

$$
f(x)=\frac{\pi}{4}-\frac{2}{\pi} \sum_{n=o d d}^{\infty} \frac{\cos (n x)}{n^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n x)}{n}
$$

The first three terms yield:

$$
f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left(\cos x+\frac{\cos (3 x)}{9}+\frac{\cos (5 x)}{25}+\ldots\right)+\left(\sin x-\frac{\sin 2 x}{2}+\frac{\sin (3 x)}{3}-\ldots\right)
$$

Plotting two cycles and verifying with Mathematica:

Just to be sure, we overlay the line $y=x$ in red :
g2 $=\operatorname{Plot}[\mathbf{x},\{\mathbf{x}, 0, \pi\}, \operatorname{PlotStyle} \rightarrow$ Red $] ;$
Show[g1, g2]

3. Consider the function :

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ x^{2}, & 0<x<\pi\end{cases}
$$

Find the Fourier coefficients and write the Fourier series both in closed form and by writing out the first three non-zero terms of each series.

Solution: We find the Fourier coefficients by making use of integration by parts where needed.

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} x^{2} d x=\frac{\pi^{2}}{6} \\
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{x}^{2} \cos (\mathrm{n} x) \mathrm{dx}=\frac{1}{\pi}\left[\left.\frac{1}{\mathrm{n}} \mathrm{x}^{2} \sin (\mathrm{n} x)\right|_{0} ^{\pi}-\frac{2}{\mathrm{n}} \int_{0}^{\pi} \mathrm{x} \sin (\mathrm{nx}) \mathrm{dx}\right] \\
=\frac{1}{\pi}\left[0-\frac{2}{n}\left(\left.\frac{-1}{n} x \cos (n x)\right|_{0} ^{\pi}\right)+\frac{2}{n^{2}} \int_{0}^{\pi} \cos (n x) \mathrm{dx}\right]
\end{gathered}
$$

The final integral above is zero since it returns $\sin (\mathrm{n} x)$ to be evaluated at 0 and π, so the a_{n} coefficients are:

$$
\begin{gathered}
\mathrm{a}_{\mathrm{n}}=\frac{1}{\pi}\left(\frac{2}{\mathrm{n}^{2}} \pi \cos (\mathrm{n} \pi)-0\right)=\frac{2(-1)^{\mathrm{n}}}{\mathrm{n}^{2}} \\
\mathrm{~b}_{\mathrm{n}}=\frac{1}{\pi} \int_{0}^{\pi} \mathrm{x}^{2} \sin (\mathrm{n} x) \mathrm{dx}=\frac{1}{\pi}\left[\left.\frac{-1}{\mathrm{n}} \mathrm{x}^{2} \cos (\mathrm{n} x)\right|_{0} ^{\pi}+\frac{2}{\mathrm{n}} \int_{0}^{\pi} \mathrm{x} \cos (\mathrm{nx}) \mathrm{dx}\right] \\
=\frac{-\pi}{\mathrm{n}} \cos (\mathrm{n} \pi)+\frac{2}{\mathrm{n} \pi} \int_{0}^{\pi} \mathrm{x} \cos (\mathrm{n} x) \mathrm{dx}=\frac{-\pi}{\mathrm{n}}(-1)^{\mathrm{n}}+\frac{2}{\mathrm{n} \pi}\left[\left.\frac{1}{\mathrm{n}} \mathrm{x} \sin (\mathrm{n} x)\right|_{0} ^{\pi}-\right. \\
\left.\left.\frac{1}{\mathrm{n}} \int_{0}^{\pi} \sin (\mathrm{n} x) \mathrm{dx}\right]=\frac{-\pi}{\mathrm{n}}(-1)^{\mathrm{n}}-\left.\frac{2}{\mathrm{n}^{3} \pi} \cos (\mathrm{n} x)\right|_{0} ^{\pi}\right] \\
=\frac{-\pi}{\mathrm{n}}(-1)^{\mathrm{n}}+\frac{2}{\mathrm{n}^{3} \pi}\left(1-(-1)^{\mathrm{n}}\right)
\end{gathered}
$$

or:

$$
\mathrm{b}_{\mathrm{n}}= \begin{cases}-\pi / \mathrm{n}, & \mathrm{n} \text { even } \\ -\left(4-\mathrm{n}^{2} \pi^{2}\right) / \mathrm{n}^{3} \pi, & \mathrm{n} \text { odd }\end{cases}
$$

The Fourier series can be written:

$$
f(x)=\frac{\pi^{2}}{6}-2 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n x)}{n^{2}}-\pi \sum_{n=\text { even }}^{\infty} \frac{\sin (n x)}{n}+\sum_{n=o d}^{a} \frac{\left(4-n^{2} \pi^{2} \sin (n x)\right.}{n^{3}}
$$

or :

$$
\begin{gathered}
f(x)=\frac{\pi^{2}}{6}-2\left(\cos x-\frac{\cos (2 x)}{4}+\frac{\cos (3 x)}{9}-,,,\right)-\pi\left(\frac{\sin (2 x)}{2}+\frac{\sin (4 x)}{4}+\ldots\right)+ \\
\left(\left(4-\pi^{2}\right) \sin x+\frac{\left(4-9 \pi^{2}\right) \sin (3 x)}{27}+\frac{\left(4-25 \pi^{2}\right) \sin (5 x)}{125}+\ldots\right)
\end{gathered}
$$

Verifying with Mathematica:

```
Clear[a0, a, bodd, beven]
a0 = 片2/6;
a[n_] := 2 (-1) n/n (
beven[n_] := - \pi/n
```



```
g1 = Plot[a0 + Sum[a[n] Cos[nx], {n, 1, 31}] + Sum[beven[n] Sin[n x], {n, 2, 30, 2}] +
    Sum[bodd[n] Sin[nx], {n, 1, 31, 2}], {x, -\pi, 3\pi}];
g2 = Plot[x^2, {x, 0, \pi}, PlotStyle }->\mathrm{ Red];
Show[g1, g2]
```


4. Find the Fourier coefficients and write the Fourier series in closed form and also the first three non - zero terms of each series for

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ \sin (2 x), & 0<x<\pi\end{cases}
$$

Solution : The danger here is to assume that orthogonality will apply since $\mathrm{f}(\mathrm{x})=\sin (2 \mathrm{x})$. However, since the limits of integration are $[0, \pi]$ and not $[-\pi, \pi]$, we must do the evaluations explicitly.

$$
\mathrm{a}_{\mathrm{o}}=\frac{1}{2 \pi} \int_{0}^{\pi} \sin (2 \mathrm{x}) \mathrm{dx}=\frac{1}{2 \pi}\left(\left.\frac{-1}{2} \cos (2 \mathrm{x})\right|_{0} ^{\pi}\right)=0
$$

We use eqs. (1 and 2) from problem one to help with the evaluation of a_{n} and b_{n}.

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{\pi} \sin (2 x) \cos (n x) d x=\frac{1}{2 \pi}\left[\int_{0}^{\pi} \sin (n+2) x-\sin (n-2) x d x\right] \\
& =\frac{1}{2 \pi}\left[\left.\left(-\frac{\cos (n+2) x}{n+2}+\frac{\cos (n-2) x}{n-2}\right)\right|_{0} ^{\pi}\right]= \begin{cases}0, & n \text { even } \\
-4 / \pi\left(n^{2}-4\right), & n \text { odd }\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{b}_{\mathrm{n}}=\frac{1}{\pi} \int_{0}^{\pi} \sin (2 \mathrm{x}) \sin (\mathrm{nx}) \mathrm{dx}=\frac{1}{2 \pi}\left[\int_{0}^{\pi}(\cos (\mathrm{n}-2) \mathrm{x}-\cos (\mathrm{n}+2) \mathrm{x}) \mathrm{dx}\right] \\
=\frac{1}{2 \pi}\left[\left.\left(\frac{\sin (\mathrm{n}-2) \mathrm{x}}{\mathrm{n}-2}-\frac{\sin (\mathrm{n}+2) \mathrm{x}}{\mathrm{n}+2}\right)\right|_{0} ^{\pi}\right]
\end{gathered}
$$

It is common for students to get to this point and conclude that all the b_{n} values are zero since our integrals return $\sin (\mathrm{nx})$ where n is an integer on $[0, \pi]$. And this is true for all values of n except n $=2$. In this case, our integral becomes:

$$
\mathrm{b}_{2}=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2}(2 \mathrm{x}) \mathrm{dx}=\frac{1}{2}
$$

and our Fourier series is:

$$
\begin{aligned}
& f(x)=\frac{\sin (2 x)}{2}-4 \sum_{n=o d d}^{\infty} \frac{\cos (n x)}{n^{2}-4} \\
= & \frac{\sin (2 x)}{2}+4\left(\frac{\cos x}{3}-\frac{\cos 3 x}{5}-\frac{\cos 5 x}{21}-\ldots\right)
\end{aligned}
$$

Verifying with Mathematica:

```
Plot[\operatorname{Sin}[2x]/2-(4/\pi) Sum[\operatorname{Cos}[nx]/(n^2-4),{n,1,31,2}],{x,-\pi,\pi}]
```


5. Find the Fourier coefficients and Fourier series for the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-1, & -\pi<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<\pi\end{cases}
$$

Write out the first three non-zero terms of each series.

Solution :

This is a relief after all the integration by parts we've just done. And if we look a little more closely, our problem can be simplified even more. Note that f is an odd function, this means that the only non-zero coefficients will be the b_{n} terms. Moreover since the function is odd, we know that:

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x
$$

In our case, this becomes:

$$
\mathrm{b}_{\mathrm{n}}=\frac{2}{\pi} \int_{0}^{\pi} \sin (\mathrm{nx}) \mathrm{dx}=\left.\frac{-2}{\pi \mathrm{n}} \cos (\mathrm{nx})\right|_{0} ^{\pi}=\frac{2}{\pi \mathrm{n}}\left(1-(-1)^{\mathrm{n}}\right)= \begin{cases}4 / \pi \mathrm{n}, & \mathrm{n} \text { odd } \\ 0, & \mathrm{n} \text { even }\end{cases}
$$

and we have simply:

$$
f(x)=\frac{4}{\pi}\left(\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\ldots\right)
$$

$\ln [148]:=$
$\operatorname{Plot}[(4 / \pi) \operatorname{Sum}[\operatorname{Sin}[n x] / n,\{n, 1,31,2\}],\{x,-3 \pi, 3 \pi\}]$

Now, is the problem even simpler than this. Could we have used another Fourier series that we have computed and deduced this one without ever taking an integral? (Hint : compare this series with the first example in class; $\mathrm{f}(\mathrm{x})=1$ for $0<\mathrm{x}<\pi$ and $\mathrm{f}(\mathrm{x})=0$ for $-\pi<\mathrm{x}<0$), see how they compare.)

