PHYS 301
 HOMEWORK \#5-- SOLUTIONS

1. We are asked to find the complex Fourier series for the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-1, & -\pi<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<\pi\end{cases}
$$

We find complex coefficients from:

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

In our case, this becomes:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{n}}=\frac{1}{2 \pi}\left[\int_{-\pi}^{0}-\mathrm{e}^{-\mathrm{inx}} \mathrm{dx}+\int_{0}^{\pi} \mathrm{e}^{-\mathrm{inx}} \mathrm{dx}\right] \\
& =\frac{1}{2 \pi}\left[-\left.\left(\frac{-1}{\mathrm{in}}\right) \mathrm{e}^{-\mathrm{inx}}\right|_{-\pi} ^{0}+\left.\left(\frac{-1}{\mathrm{in}}\right) \mathrm{e}^{-\mathrm{inx}}\right|_{0} ^{\pi}\right] \\
& =\frac{1}{2 \pi}\left[\frac{1}{\mathrm{in}}\left(1-\mathrm{e}^{-\mathrm{in} \pi}\right)-\frac{1}{\mathrm{in}}\left(\mathrm{e}^{-\mathrm{in} \pi}-1\right)\right] \\
& =\frac{1}{2 \pi \mathrm{in}}\left[2\left(1-\mathrm{e}^{-\mathrm{in} \pi}\right)\right]=\frac{1}{\pi \mathrm{in}}\left[1-\mathrm{e}^{-\mathrm{in} \pi}\right]
\end{aligned}
$$

We know that $e^{-i n \pi}=(-1)^{n}$, so our coefficients become:

$$
\mathrm{c}_{\mathrm{n}}= \begin{cases}0, & \mathrm{n} \text { even } \\ 2 / \pi \mathrm{in}, & \mathrm{n} \text { odd }\end{cases}
$$

Since the function is odd, we can see that $c_{o}=0$. Our Fourier series is:

$$
\mathrm{f}(\mathrm{x})=\sum_{-\infty}^{\infty} \mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{inx}}=\frac{2}{\pi}\left[\frac{\left(\mathrm{e}^{\mathrm{ix}}-\mathrm{e}^{-\mathrm{ix}}\right)}{\mathrm{i}}+\frac{\mathrm{e}^{3 \mathrm{ix}}-\mathrm{e}^{-3 \mathrm{ix}}}{3 \mathrm{i}}+\ldots\right]=\frac{4}{\pi} \sum_{\mathrm{odd}}^{\infty} \frac{\sin (\mathrm{nx})}{\mathrm{n}}
$$

Verifying with Mathematica:
$\ln [13]:=\operatorname{Plot}[(4 / \pi) \operatorname{Sum}[\operatorname{Sin}[n x] / n,\{n, 1,31,2\}],\{x,-\pi, 3 \pi\}]$

2. In this case, our function is

$$
\mathrm{V}(\mathrm{t})=\mathrm{t} / \pi,-\pi<\mathrm{t}<\pi
$$

(Note that we must divide by π since the amplitude of the wave is 1 (and not π). Our Fourier coefficients are found via:

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t=\frac{1}{2 \pi^{2}} \int_{-\pi}^{\pi} t e^{-i n t} d t
$$

Integration by parts yields:

$$
\begin{gathered}
\mathrm{c}_{\mathrm{n}}=\frac{1}{2 \pi^{2}}\left[\left.\frac{-1}{\mathrm{in}} \mathrm{te} \mathrm{e}^{-\mathrm{int}}\right|_{-\pi} ^{\pi}-\left(\frac{-1}{\mathrm{in}}\right) \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{int}} \mathrm{dt}\right] \\
=\frac{1}{2 \pi^{2}}\left[\frac{-1}{\mathrm{in}}\left(\pi \mathrm{e}^{-\mathrm{in} \pi}-(-\pi) \mathrm{e}^{-\mathrm{in}(-\pi)}\right)+\frac{1}{\mathrm{i}^{2} \mathrm{n}^{2}}\left(\mathrm{e}^{-\mathrm{in} \pi}-\mathrm{e}^{\mathrm{in} \pi}\right)\right]
\end{gathered}
$$

The last term on the right is zero, so I can rewrite the coefficients as:

$$
\mathrm{c}_{\mathrm{n}}=\frac{-1}{2 \pi^{2} \mathrm{in}}\left(2 \pi(-1)^{\mathrm{n}}\right)=\frac{-(-1)^{\mathrm{n}}}{\pi \mathrm{in}}
$$

This definition of c_{n} can clearly not hold for $\mathrm{n}=0$, but since the function is odd on $[-\pi, \pi]$ we know $c_{o}=0$.

The Fourier series is:

$$
\begin{aligned}
V(t)=\sum_{-\infty}^{\infty} c_{n} e^{i n x} & =\frac{1}{\pi}\left[\frac{e^{i x}-e^{-i x}}{i}-\frac{\left(e^{2 i x}-e^{-2 i x}\right)}{2 i}+\frac{\left(e^{3 i x}-e^{3 i x}\right)}{3 i}-\right] \ldots \\
& =\frac{2}{\pi}\left[\sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\ldots\right]
\end{aligned}
$$

Verifying through Mathematica:
$\ln [17]:=\operatorname{Plot}\left[(2 / \pi) \operatorname{Sum}\left[-(-1)^{\wedge} n \operatorname{Sin}[n x] / n,\{n, 1,21\}\right],\{x,-\pi, 3 \pi\}\right]$

3. Now, we have (almost) the same function, but on a different domain. We have :

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<5
$$

If our function is 2 L periodic on $[0,5], \mathrm{L}=5 / 2$, and our equations for the coefficients and Fourier series are:

$$
c_{n}=\frac{1}{2(5 / 2)} \int_{0}^{5} f(x) e^{-2 i n \pi x / 5} d x=\frac{1}{5} \int_{0}^{5} f(x) e^{-2 i n \pi x / 5} d x
$$

and

$$
\mathrm{f}(\mathrm{x})=\sum \mathrm{c}_{\mathrm{n}} \mathrm{e}^{2 \mathrm{in} \pi \mathrm{x} / 5}
$$

We' ve already integrated this function by parts (problem 2), so let' s make our lives easy :

Simplify[Integrate[x $\operatorname{Exp}[-2 \operatorname{In} \pi \times 5] / 5,\{x, 0,5\}]$, Assumptions $->n \in$ Integers]

Out[18] $=\frac{5 i}{2 \operatorname{n} \pi}$
Remembering that $\mathrm{i}=-1 / \mathrm{i}$, this becomes:

$$
\mathrm{c}_{\mathrm{n}}=\frac{-5}{2 \pi \mathrm{in}}
$$

Now, this clearly will not give us a meaningful expression for $n=0$, so we compute directly :

$$
\mathrm{c}_{0}=\frac{1}{5} \int_{0}^{5} \mathrm{xdx}=\frac{5}{2}
$$

which we could have guessed since that is the average value of x on $[0,5]$
Our Fourier series is:

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\frac{5}{2}-\frac{5}{2 \pi} \Sigma \frac{\mathrm{e}^{2 \pi \mathrm{inx} / 5}}{\mathrm{in}} \\
=\frac{5}{2}-\frac{5}{2 \pi}\left(2 \sin (2 \pi \mathrm{x} / 5)+\frac{2 \sin (4 \pi \mathrm{x} / 5)}{2}+2 \frac{\sin (6 \pi \mathrm{x} / 5)}{3}+\ldots\right)
\end{gathered}
$$

Verifying with Mathematica:
$\ln [27]:=\operatorname{Plot}[5 / 2-5 /(\pi) \operatorname{Sum}[\operatorname{Sin}[2 n \pi x / 5] / n,\{n, 1,31\}],\{x, 0,15\}]$

4. a) We are asked to consider the function :

$$
f(x)=\sin x+\sin 3 x+\sin 10 x
$$

We know that $\sin x$ is 2π periodic. When $x=2 \pi, \sin 3 x$ is $\sin 6 \pi$ and $\sin 10 x$ becomes $\sin 20 \pi$, all of which have the same value. Therefore, the function $f(x)$ is also 2π period.

Since the function is 2π periodic, $\mathrm{f}(\pi / 6)=\mathrm{f}(13 \pi / 6)=\mathrm{f}(25 \pi / 6)$, which is easily shown via:
$\ln [35]:=$
$\mathrm{f}\left[\mathrm{x}_{-}\right]:=\operatorname{Sin}[\mathrm{x}]+\operatorname{Sin}[3 \mathrm{x}]+\operatorname{Sin}[10 \mathrm{x}]$
$\operatorname{Print}[f[\pi / 6], " \quad ", f[13 \pi / 6], " \quad ", f[25 \pi / 6]]$
$\frac{3}{2}-\frac{\sqrt{3}}{2} \quad \frac{3}{2}-\frac{\sqrt{3}}{2} \quad \frac{3}{2}-\frac{\sqrt{3}}{2}$
$f(x)$ will have the same value for all x that satisfy $f(x)=f(x+12 \pi / 6)$, so $f(37 \pi / 6), f(49 \pi / 6), f(61 \pi / 6)$ etc all yield the same result:
$\ln [37]=\operatorname{Print}[f[37 \pi / 6], " \quad ", f[49 \pi / 6], " \quad ", f[61 \pi / 6]]$ $\frac{3}{2}-\frac{\sqrt{3}}{2} \quad \frac{3}{2}-\frac{\sqrt{3}}{2} \quad \frac{3}{2}-\frac{\sqrt{3}}{2}$
b) Let $g(x)=g(x+5)$

The period of a \sin or \cos function is related to the coefficient p in $\cos (p x)$ by

$$
\text { period }=2 \pi / \mathrm{p}
$$

therefore, if the period is $5, \mathrm{p}=2 \pi / 5$, as shown by :
$\ln [38]:=\operatorname{Plot}[\operatorname{Cos}[2 \pi \mathbf{x} / 5],\{\mathbf{x}, 0,15\}]$

and we get three full cycles.
If the period is $5 / 2$, then $p=4 \pi / 5$:
$\ln [39]:=$
$\operatorname{Plot}[\operatorname{Cos}[4 \pi x / 5],\{x, 0,7.5\}]$

The function could have all periods $5 / \mathrm{n}$, and the corresponding values of p would be $2 \pi \mathrm{n} / 5$. If we summed, say, the first 100 functions $\cos (2 \mathrm{n} \pi \mathrm{x} / 5)$, we would get a function whose period is still 5 :
$\ln [40]:=$
$\operatorname{Plot}[\operatorname{Sum}[\operatorname{Cos}[2 \pi n x / 5],\{n, 1,100\}],\{x, 0,15\}]$

And while a mess, you can see that the sum of functions still has a period of 5. The purpose of this exercise is to demonstrate that if we have a function that is 2 L periodic, the sum of all sin and cos of the form $\sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L})($ or $\cos (\mathrm{n} \pi \mathrm{x} / \mathrm{L})$ produces a function whose period is equal to the original.
5. Now we have a function that is 2 L periodic on $[0,1]$. This means that $2 \mathrm{~L}=1$ and we will use L $=1 / 2$.

We can see that the average value of the function is zero on the interval, so we expect that a_{o} is zero. For a_{n} and b_{n} we write:

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{\mathrm{~L}} \int_{0}^{1} \mathrm{f}(\mathrm{x}) \operatorname{Cos}[\mathrm{n} \pi \mathrm{x} / \mathrm{L}] \mathrm{dx}
$$

With $\mathrm{L}=1 / 2$:

$$
=2 \int_{0}^{1 / 2}-\cos (2 n \pi x) d x+2 \int_{1 / 2}^{1} \cos (2 n \pi x) d x=0
$$

(each integral returns $\sin (2 \mathrm{n} \pi \mathrm{x})$ evaluated at either $0,1 / 2$, or 1)

$$
\begin{gathered}
\mathrm{b}_{\mathrm{n}}=2 \int_{0}^{1 / 2}-\sin (2 \mathrm{n} \pi x) \mathrm{dx}+2 \int_{1 / 2}^{1} \sin (2 \mathrm{n} \pi \mathrm{x}) \mathrm{dx} \\
=\frac{2}{2 \mathrm{n} \pi}(\cos (\mathrm{n} \pi)-1)-\frac{2}{2 \mathrm{n} \pi}(\cos (2 \mathrm{n} \pi)-\cos (\mathrm{n} \pi)) \\
=\frac{1}{\mathrm{n} \pi}\left[2(-1)^{\mathrm{n}}-2\right]=\frac{2}{\mathrm{n} \pi}\left[(-1)^{\mathrm{n}}-1\right]= \begin{cases}0, & \mathrm{n} \text { even } \\
-4 / \mathrm{n} \pi, & \mathrm{n} \text { odd }\end{cases}
\end{gathered}
$$

Our Fourier series is :

$$
f(x)=\Sigma b_{n} \sin (2 n \pi x)=\frac{-4}{\pi}\left[\operatorname{Sin}(2 \pi x)+\frac{\operatorname{Sin}(4 \pi x)}{2}+\frac{\operatorname{Sin}(6 \pi x)}{3}+\ldots\right]
$$

Verifying :

and we verify over three cycles.
6. We consider the function :

$$
f(x)= \begin{cases}10, & 0<x<10 \\ 20, & 10<x<20\end{cases}
$$

The average value of the function on the interval is 15 , so $a_{o}=15$. The function is 2 L periodic on $[0,20]$, so $\mathrm{L}=10$. Computing the other coefficients:
$\operatorname{In}[67]:=$ Clear [a, b]
$a=(1 / 10)$ Integrate $[10 \operatorname{Cos}[n \pi x / 10],\{x, 0,10\}]+$
Integrate $[20 \operatorname{Cos}[n \pi x / 10],\{x, 10,20\}]$
Out[68]= $\frac{10 \operatorname{Sin}[\mathrm{n} \pi]}{\mathrm{n} \pi}+\frac{200(-\operatorname{Sin}[\mathrm{n} \pi]+\operatorname{Sin}[2 \mathrm{n} \pi])}{\mathrm{n} \pi}$
$\ln [63]:=$
$\frac{10 \operatorname{Sin}[\mathrm{n} \pi]}{\mathrm{n} \pi}+\frac{200 \operatorname{Sin}[2 \mathrm{n} \pi]}{\mathrm{n} \pi}$
and knowing the properties of sin, we can see these are all zero.
$\ln [71]:=\mathbf{b}=(1 / 10)$
(Integrate $[10 \operatorname{Sin}[n \pi x / 10],\{x, 0,10\}]+\operatorname{Integrate}[20 \operatorname{Sin}[n \pi x / 10],\{x, 10,20\}])$
$\operatorname{Out}[71]=\frac{1}{10}\left(-\frac{100(-1+\operatorname{Cos}[\mathrm{n} \pi])}{\mathrm{n} \pi}+\frac{200(\operatorname{Cos}[\mathrm{n} \pi]-\operatorname{Cos}[2 \mathrm{n} \pi])}{\mathrm{n} \pi}\right)$
Let' s figure out what this means. The first term on the left in the output is zero for even n , and equal to $20 /(\mathrm{n} \pi)$ for odd n. The term on the right is also zero for even values of n, and equals $40 /(\mathrm{n} \pi)$ for odd values. So we can write :

$$
\mathrm{b}_{\mathrm{n}}= \begin{cases}0, & \mathrm{n} \text { even } \\ \frac{-20}{\mathrm{n} \pi}, & \mathrm{n} \text { odd }\end{cases}
$$

And our Fourier series is:

$$
f(x)=15-\frac{20}{\pi}\left[\operatorname{Sin}(\pi x / 10)+\frac{\operatorname{Sin}(3 \pi x / 10)}{3}+\frac{\operatorname{Sin}(5 \pi x / 10)}{5}+\ldots\right]
$$

Verifying :

7. This is an example where we don' thave a periodically repeating form, and we have to extend the function from [0, L] to [-L, L] to compute its Fourier series. As we will see later in the course, the initial conditions demand a sine series, so our extension becomes :

$$
\mathrm{fx})= \begin{cases}2 \mathrm{hx} / \mathrm{L}, & -\mathrm{L} / 2<\mathrm{x}<\mathrm{L} / 2 \\ 2 \mathrm{~h}-2 \mathrm{hx} / \mathrm{L}, & \mathrm{~L} / 2<\mathrm{x}<\mathrm{L} \\ -2 \mathrm{~h}-2 \mathrm{hx} / \mathrm{L}, & -\mathrm{L}<\mathrm{x}<-\mathrm{L} / 2\end{cases}
$$

Writing the piecewise function using the "Which" command and plotting, we see:
Clear [f, h, L]
$\mathrm{h}=0.2 ; \mathrm{L}=1$;
$\mathrm{f}\left[\mathrm{x}_{-}\right]:=$Which $[-\mathrm{L}<\mathrm{x}<-\mathrm{L} / 2,-2 \mathrm{~h}-2 \mathrm{~h} x / \mathrm{L}$,
$-\mathrm{L} / 2<\mathrm{x}<\mathrm{L} / 2,2 \mathrm{~h} \times \mathrm{L}, \mathrm{L} / 2<\mathrm{x}<\mathrm{L}, 2 \mathrm{~h}-2 \mathrm{~h} \times / \mathrm{L}]$
Plot[f[x], \{x,-L,L\}]

And remember I have to input values for h and L to produce a plot. We have an odd function on [L,L], so we know our Fourier series will have only odd (sin) terms. We need only compute the b_{n} coefficients:

$$
\mathrm{b}_{\mathrm{n}}=\frac{1}{\mathrm{~L}} \int_{-\mathrm{L}}^{\mathrm{L}} \mathrm{f}(\mathrm{x}) \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \mathrm{dx}=\frac{2}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{f}(\mathrm{x}) \sin (\mathrm{n} \pi \mathrm{x} / \mathrm{L}) \mathrm{dx}
$$

We only need to integrate from 0 to L , so we only need that portion of the extended function that corresponds to the actual string. Getting some help here:

```
In[96]:= Clear[f,h, L]
    Simplify[(2/L) (Integrate[2hx/LSin[n\pix/L], {x, 0, L/ 2 }] + Integrate[
            (2h-2hx/L) Sin[n\pix/L],{x,L/2,L}]), Assumptions }->\textrm{L
    \frac{8h\operatorname{Sin}[\frac{n\pi}{2}]}{\mp@subsup{n}{}{2}\mp@subsup{\pi}{}{2}}
```

And that's pleasingly simple. The coefficients are zero for even n , and alternate sign for odd n , so our Fourier series is:

$$
\left.f(x)=\frac{8 h}{\pi^{2}} \operatorname{Sin}[\pi x / L]-\frac{\operatorname{Sin}[3 \pi x / L]}{9}+\frac{\operatorname{Sin}[5 \pi x / L]}{25}-\ldots\right]
$$

Verifying :
$\ln [101]:=$ Clear [f, x, L, h]
$\mathrm{h}=0.2 ; \mathrm{L}=1$;
$\operatorname{Plot}\left[\left(8 h / \pi^{\wedge} 2\right) \operatorname{Sum}\left[\operatorname{Sin}[n \pi / 2] \operatorname{Sin}[n \pi x / L] / n^{2},\{n, 1,31\}\right],\{x,-L, L\}\right]$

