PHYS 301 HOMEWORK \#6

Due : 20 March 2017

1. Show that (or justify that) :

$$
\delta_{\mathrm{ij}} \delta_{\mathrm{jk}}=\delta_{\mathrm{ik}}
$$

Where the δ are Kronecker Deltas.
2. The Levi-Civita permutation tensor can be defined in any number of dimensions, and has the familiar properties that :

$$
\epsilon_{\mathrm{ijk} \ldots . . \mathrm{rst}}= \begin{cases}0, & \text { if any two indices are the same } \\ 1, & \text { if all indices are different and are an even permutation } \\ -1, & \text { if all indices are different and are an odd permuation }\end{cases}
$$

Consider then the product of these five dimensional permutation tensors:

$$
\epsilon_{\mathrm{ijklm}} \epsilon_{\mathrm{ijklm}}
$$

What is the value of this product? You should obtain a numerical result; show your work and/or explain your reasoning.

For problems 3-5, use Einstein summation notation. No credit will be given for using term - by - term component expansions.
3. Prove that $\nabla \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}$
4. Prove that $\nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B})$
5. If f and g are both differentiable functions of $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$, use summation notation to derive the identity for $\nabla\left(\frac{f}{g}\right)$
6. For this problem, you will use both term by term component expansions and summation notation to determine the value of $\nabla \times(\nabla \phi)$ where ϕ is a scalar function.
a) Write the gradient of ϕ explicitly in Cartesian coordinates and compute its curl. What property of partial differentiation did you use to determine a numerical value for this expression?
b) Now, use summation notation to evaluate $\nabla \times(\nabla \phi)$.

