## PHYS 301

## HOMEWORK \#7-- Solutions

1. We write the divergence of a vector v in spherical coordinates :

$$
\nabla \cdot \mathbf{v}=\frac{1}{\mathrm{r}^{2} \sin \theta}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \sin \theta \mathrm{v}_{\mathrm{r}}\right)+\frac{\partial}{\partial \theta}\left(\mathrm{r} \sin \theta \mathrm{v}_{\theta}\right)+\frac{\partial}{\partial \phi}\left(\mathrm{r}_{\phi}\right)\right]
$$

We are interested in the position vector $\mathbf{r}=\mathrm{r} \hat{\boldsymbol{r}}$. This vector has only an r component, so the divergence becomes:

$$
\nabla \cdot \mathbf{r}=\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \sin \theta \cdot \mathrm{r}\right)
$$

Since $\sin \theta$ is a constant with respect to $\partial / \partial \mathrm{r}$, we can move it outside the derivative leaving us with :

$$
\nabla \cdot \mathbf{r}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{3}\right)=\frac{3 \mathrm{r}^{2}}{\mathrm{r}^{2}}=3
$$

as we must obtain.
2. We begin with the Laplacian in spherical coordinates; since we only need the radial component, we can write :

$$
\nabla^{2} \mathrm{~V}=\frac{1}{\mathrm{r}^{2} \sin \theta}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \sin \theta \frac{\partial \mathrm{~V}_{\mathrm{r}}}{\partial \mathrm{r}}\right)\right]=0
$$

For our trial solution of $\mathrm{V}=\mathrm{c} r^{n}$, we have:

$$
\begin{gathered}
\nabla^{2} \mathrm{~V}=\frac{1}{\mathrm{r}^{2}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\frac{\partial}{\partial \mathrm{r}} \mathrm{cr}^{\mathrm{n}}\right)\right]=\frac{1}{\mathrm{r}^{2}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \mathrm{ncr}^{\mathrm{n}-1}\right)\right]=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{ncr}^{\mathrm{n}+1}\right) \\
=\frac{1}{\mathrm{r}^{2}} \cdot \mathrm{n}(\mathrm{n}+1) \mathrm{cr}^{\mathrm{n}}=0
\end{gathered}
$$

For this expression to equal zero, either $r$ is always zero or the product $n(n+1)=0$ which implies that n can be either 0 or -1 .

For each of the next three problems, our trial solution will be:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

which implies the following derivatives:

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad \text { and } y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

To save myself some typing I will omit the upper limits of some of the summations in the solutions below.
3. $y^{\prime \prime}-x y^{\prime}+2 y=0$

We use our trial solutions:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}
$$

Multiplying terms in the second summation yields :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n a_{n} x^{n}+2 \sum_{n=0}^{\infty} a_{n} x^{n}
$$

We re - index the first sum by setting $\mathrm{k}=\mathrm{n}-2$ and obtain :

$$
\sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+2 \sum_{n=0}^{\infty} a_{n} x^{n}
$$

Finally, we strip out the $\mathrm{n}=1$ terms from the first and third sums to give :

$$
2 a_{2}+2 a_{o}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}+2 a_{n}\right] x^{n}=0
$$

The individual terms tell us :

$$
\mathrm{a}_{2}=-\mathrm{a}_{0}
$$

and the recursion relation becomes:

$$
a_{n+2}=\frac{(n-2) a_{n}}{(n+2)(n+1)}
$$

Notice that we expect both an odd and even branch of the solution. Notice also that the factor of n 2 in the numerator means that our coefficient will be zero when $\mathrm{n}=2$, and therefore all higher order even coefficients will be zero. Using the recursion relation, we obtain for our coefficients :

$$
\begin{gathered}
a_{2}=-a_{0} \\
a_{4}=0 \\
a_{3}=\frac{-1 a_{1}}{3 \cdot 2} \\
a_{5}=\frac{a_{3}}{5 \cdot 4}=\frac{-a_{1}}{5 \cdot 4 \cdot 3 \cdot 2} \\
a_{7}=\frac{3 a_{5}}{7 \cdot 6}=\frac{-3 a_{1}}{7!}
\end{gathered}
$$

and we can write our solution as :

$$
y=a_{0}\left(1-x^{2}\right)+a_{1}\left(x-\frac{x^{3}}{3!}-\frac{x^{5}}{5!}-\frac{3 x^{7}}{7!}-\ldots\right)
$$

4. $\left(x^{2}+4\right) y^{\prime \prime}+x y=x+2$

This is a case in which we have non-zero terms on the right hand side, so we will need to be careful to set all the $x^{0}$ terms on the left equal to 2 , and all the $x^{1}$ terms on the left to 1 (the coefficient of x
on the right). Substituting our trial solutions gives us:

$$
\left(x^{2}+4\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=0}^{\infty} a_{n} x^{n}=x+2
$$

Performing the indicated multiplications:

$$
x^{2} \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+4 \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=0}^{\infty} a_{n} x^{n}=x+2
$$

or :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+4 \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=x+2
$$

Re - index by setting $\mathrm{k}=\mathrm{n}-2$ in the second sum and $\mathrm{k}=\mathrm{n}+1$ in the third sum yielding :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+4 \sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=x+2
$$

Now, to get all sums to the same lower limit of $\mathrm{n}=2$, we strip out the $\mathrm{n}=0$ and $\mathrm{n}=1$ terms from the middle sum, and the $\mathrm{n}=1$ term from the final sum :

$$
8 a_{2}+24 a_{3} x+a_{0} x+\sum_{n=2}^{\infty}\left[4(n+2)(n+1) a_{n+2}+n(n-1) a_{n}+a_{n-1}\right] x^{n}=x+2
$$

Now we equate all the terms on the left to their corresponding powers on the right. The summatin begins at $\mathrm{n}=2$, so we can write immediately that:

$$
8 \mathrm{a}_{2}=2 \Rightarrow \mathrm{a}_{2}=\frac{1}{4}
$$

Notice that we find an absolute value for $a_{2}$ without reference to any other coefficient. Also, we obtain:

$$
24 \mathrm{a}_{3}+\mathrm{a}_{0}=1 \Rightarrow \mathrm{a}_{3}=\frac{1-\mathrm{a}_{0}}{24}=\frac{1}{24}-\frac{\mathrm{a}_{0}}{24}
$$

Our recursion relation, valid for $\mathrm{n} \geq 2$ is:

$$
a_{n+2}=-\frac{n(n-1) a_{n}}{4(n+2)(n+1)}-\frac{a_{n-1}}{4(n+2)(n+1)}
$$

Let' s see what these recursion relations give :

$$
\begin{gathered}
a_{4}=\frac{-1}{24} a_{2}-\frac{a_{1}}{48}=\frac{-1}{24}\left(\frac{1}{4}\right)-\frac{1}{48} a_{1}=\frac{-1}{96}-\frac{1}{48} a_{1} \\
a_{5}=\frac{-6}{80} a_{3}-\frac{a_{2}}{80}=\frac{-3}{40}\left(\frac{1}{24}-\frac{a_{0}}{24}\right)-\frac{1}{4}\left(\frac{1}{80}\right)=\frac{-1}{160}+\frac{1}{320} a_{0}
\end{gathered}
$$

Now let' s remember explicitly that our series solution is:

$$
\begin{gathered}
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\ldots \\
y=a_{0}+a_{1} x+\frac{1}{4} x^{2}+\left(\frac{1}{24}-\frac{a_{0}}{24}\right) x^{3}+\left(\frac{-1}{96}-\frac{1}{48} a_{1}\right) x^{4}+\left(\frac{-1}{160}+\frac{1}{320} a_{0}\right) x^{5}
\end{gathered}
$$

I can group these according to coefficient and write:

$$
y=a_{0}\left(1-\frac{1}{24} x^{3}+\frac{1}{320} x^{5}-\ldots\right)+a_{1}\left(x-\frac{1}{48} x^{3}+\ldots\right)+\left(\frac{1}{4} x^{2}+\frac{1}{24} x^{3}-\frac{1}{96} x^{4}-\frac{1}{160} x^{5}+\ldots\right)
$$

Why do we have three parts to the solution? We expect a second order differential equation to have two branches, but what does the third branch represent?
5. $y^{\prime \prime}+(x-1) y^{\prime}+(2 x-3) y=0$

The trial solution yields :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+(x-1) \sum_{n=1}^{\infty} n a_{n} x^{n-1}+(2 x-3) \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Multiplying gives :

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n+1}-3 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

We have to re - index the first, third and fourth summations, using, respectively, $k=n-2, k=n-1$ and $\mathrm{k}=\mathrm{n}+1$. Making these subsitutions gives us :

$$
\sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+2 \sum_{n=1}^{\infty} a_{n-1} x^{n}-3 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Stripping out the $\mathrm{n}=1$ terms from the sums with lower limits of zero (the first, third and last) results in :

$$
2 a_{2}-a_{1}-3 a_{o}=0 \Rightarrow a_{2}=\frac{a_{1}}{2}+\frac{3 a_{0}}{2}
$$

and our recursion relation becomes

$$
a_{n+2}=\frac{a_{n+1}}{n+2}-\frac{(n-3)}{(n+2)(n+1)} a_{n}-\frac{2 a_{n-1}}{(n+2)(n+1)}
$$

Using the recursion relation, we find that:

$$
\begin{gathered}
a_{3}=\frac{a_{2}}{3}-\frac{(-2) a_{1}}{3 \cdot 2}-\frac{2 a_{0}}{3 \cdot 2}=\frac{a_{2}}{3}+\frac{a_{1}}{3}-\frac{a_{0}}{3}=\frac{1}{3}\left(\frac{a_{1}}{2}+\frac{3 a_{0}}{2}\right)+\frac{a_{1}}{3}-\frac{a_{0}}{3}=\frac{a_{1}}{2}+\frac{1}{6} a_{0} \\
a_{4}=\frac{a_{3}}{4}-\frac{(-1) a_{2}}{12}-\frac{2 a_{1}}{12}=\frac{1}{4}\left(\frac{a_{1}}{2}+\frac{1}{6} a_{0}\right)+\frac{1}{12}\left(\frac{a_{1}}{2}+\frac{3 a_{0}}{2}\right)-\frac{a_{1}}{6}=\frac{1}{6} a_{0}
\end{gathered}
$$

and our series solution becomes:

$$
y=a_{0}\left(1+\frac{3}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{6} x^{4}+\ldots\right)+a_{1}\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\ldots\right)
$$

