PHYS 301 HOMEWORK \#9

Due : 12 April 2017

1. Consider the electric quadrupole in the diagram below :

The -q charges are located at $(\mathrm{a}, 0)$ and $(-a, 0)$ along the x -axis. Express the potential at O due to this arrangement of charges in terms of Legendre polynomials. Assuming $\mathrm{a} \ll \mathrm{r}$, what is the leading term of the expansion?
2. Determine the Legendre coefficients out to c_{5} for the function:

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-1, & -1<\mathrm{x}<0 \\ 1, & 0<\mathrm{x}<1\end{cases}
$$

and write out the Legendre series for this function.
3. Expand the following as Legendre series; you may use Mathematica to verify your results, but you must show all integration by hand. (10 pts for each series.
a) $x^{2}-x$
b) $7 x^{4}-3 x+1$
4. The generating function for Bessel' s functions of the first kind is :

$$
g(x, t)=e^{(x / 2)(t-1 / t)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}
$$

where J_{n} is the nth order Bessel function. Use the generating function to show that:
a) $\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})=\frac{2 \mathrm{n}}{\mathrm{x}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$
b) $\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})=2 \frac{\mathrm{~d} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})}{\mathrm{dx}}$

10 pts for each part.

