PHYS 314 SECOND HOUR EXAM SOLUTIONS

1. The most common error I have seen so far is that students are treating potential as a vector and taking only the y component. Potential is a scalar and has no components. The potential at the point b from the midpoint of the rod is :

$$
\begin{gathered}
\mathrm{d} \Phi=-\frac{\mathrm{Gdm}}{\mathrm{r}} \\
\mathrm{dm}=\rho \mathrm{dx} \text { and } \mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{b}^{2}}
\end{gathered}
$$

Therefore, integrating along the entire rod gives :

$$
\Phi=-2 \mathrm{G} \rho \int_{0}^{\mathrm{L}} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}+\mathrm{b}^{2}}}=-\left.2 \mathrm{G} \rho\left[\ln \left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)+\mathrm{x}\right]\right|_{0} ^{\mathrm{L}}=-2 \mathrm{G} \rho\left[\ln \left(\mathrm{~L}^{2}+\mathrm{b}^{2}\right)+\mathrm{L}-\ln (\mathrm{b})\right]
$$

The limits of integration and factor of 2 make use of the symmetry of the situation. We find the force from:

$$
\mathrm{dF}=-\frac{\mathrm{Gmdm}}{\mathrm{r}^{2}}
$$

where r and dm will be as above. However, since forces are vectors, the symmetry of the situation tells us that only the y component of force will be non-zero. Defining θ as the angle between the vertical and a line from b to the rod, we have that the y component of the force is written as:

$$
\begin{gathered}
\mathrm{dF}_{\mathrm{y}}=-\frac{\mathrm{Gmdm} \cos \theta}{\mathrm{r}^{2}}=-\frac{\mathrm{Gm} \rho \mathrm{dx}}{\mathrm{x}^{2}+\mathrm{b}^{2}}\left(\frac{\mathrm{~b}}{\sqrt{\mathrm{x}^{2}+\mathrm{b}^{2}}}\right) \\
\text { and } \mathrm{F}_{\mathrm{y}}=-2 \mathrm{Gm} \rho \mathrm{~b} \int_{0}^{\mathrm{L}} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)^{3 / 2}}=-\left.2 \mathrm{Gm} \rho \mathrm{~b}\left(\frac{\mathrm{x}}{\mathrm{~b}^{2} \sqrt{\mathrm{x}^{2}+\mathrm{b}^{2}}}\right)\right|_{0} ^{\mathrm{L}}
\end{gathered}
$$

2. a) This is done in detail in both Felder and Felder and Thornton/Marion, although I think the treatment in Felder and Felder is much clearer.
b) The length of a path on a surface is simply :

$$
\mathrm{J}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{ds}
$$

On a cylinder, the element of length is found from :

$$
\mathrm{ds}^{2}=\mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \phi^{2}+\mathrm{dz}^{2}
$$

Since ρ is constant on a cylinder, $\mathrm{d} \rho=0$, and we have :

$$
\mathrm{ds}=\sqrt{\rho^{2} \mathrm{~d} \phi^{2}+\mathrm{dz}}=\mathrm{dz} \sqrt{1+\rho^{2}(\mathrm{~d} \phi / \mathrm{dz})^{2}}
$$

so that

$$
\mathrm{J}=\int_{\mathrm{a}}^{\mathrm{b}} \sqrt{1+\rho^{2}(\mathrm{~d} \phi / \mathrm{dz})^{2}} \mathrm{dz}
$$

and we need to find the function that minimizes the integral above. Therefore, we use the integrand in the Euler-Lagrange equation:

$$
\frac{\mathrm{d}}{\mathrm{dz}}\left(\frac{\partial \mathrm{f}}{\partial \phi^{\prime}}\right)-\frac{\partial \mathrm{f}}{\partial \phi}=0
$$

where

$$
\mathrm{f}=\sqrt{1+\rho^{2}(\mathrm{~d} \phi / \mathrm{dz})^{2}} \text { and } \phi^{\prime}=\mathrm{d} \phi / \mathrm{dz}
$$

Since there is no explicit ϕ dependence of f , we know that

$$
\frac{\mathrm{d}}{\mathrm{dz}}\left(\frac{\partial \mathrm{f}}{\partial \phi^{\prime}}\right)=0 \Rightarrow \frac{\partial \mathrm{f}}{\partial \phi^{\prime}}=\mathrm{cst}
$$

or :

$$
\frac{\partial}{\partial \phi^{\prime}} \sqrt{1+\rho^{2}\left(\phi^{\prime}\right)^{2}}=\frac{\rho^{2} \phi^{\prime}}{\sqrt{1+\rho^{2}\left(\phi^{\prime}\right)^{2}}}=\mathrm{C}
$$

Remembering that ρ is a constant on the surface of a cylinder, simple algrebra will yield:

$$
\frac{\mathrm{d} \phi}{\mathrm{dz}}=\mathrm{c} \Rightarrow \phi=\mathrm{az}+\mathrm{b}
$$

which is the equation for a helix. If you had written the solution in terms of $z(\phi)$, you would have followed exactly the same procedure and obtained $\mathrm{z}=\mathrm{c} \phi+\mathrm{d}$
3. Let' s start by writing $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$; if θ is the angle between the vertical and the pendulum, we have :

$$
\begin{gathered}
\mathrm{x}(\mathrm{t})=\mathrm{b} \sin \theta \Rightarrow \dot{\mathrm{x}}=\mathrm{b} \dot{\theta} \cos \theta \\
\mathrm{y}(\mathrm{t})=\frac{1}{2} \mathrm{at} \mathrm{t}^{2}-\mathrm{b} \cos \theta \Rightarrow \dot{\mathrm{y}}=\mathrm{at}+\mathrm{b} \dot{\theta} \sin \theta \\
\text { then, } \mathrm{T}=\frac{\mathrm{m}}{2}\left(\dot{\mathrm{x}}^{2}+\dot{\mathrm{y}}^{2}\right)=\frac{\mathrm{m}}{2}\left(\mathrm{a}^{2} \mathrm{t}^{2}+\mathrm{b}^{2} \dot{\theta}^{2}+2 \mathrm{abt} \dot{\theta} \sin \theta\right)
\end{gathered}
$$

$$
\mathrm{U}=\mathrm{mg} \mathrm{y}=\mathrm{mg}\left(\frac{1}{2} \mathrm{a} \mathrm{t}^{2}-\mathrm{b} \cos \theta\right)
$$

Then, we can write the Lagrangian :

$$
\mathrm{L}=\mathrm{T}-\mathrm{U}=\frac{\mathrm{m}}{2}\left(\mathrm{a}^{2} \mathrm{t}^{2}+\mathrm{b}^{2} \dot{\theta}^{2}+2 \mathrm{abt} \dot{\theta} \sin \theta\right)-\mathrm{mg}\left(\frac{1}{2} \mathrm{a} \mathrm{t}^{2}-\mathrm{b} \cos \theta\right)
$$

and we see we can write the entire Lagrangian in terms of θ. Taking partial derivatives :

$$
\frac{\partial \mathrm{L}}{\partial \dot{\theta}}=\mathrm{mb}^{2} \dot{\theta}+\mathrm{mabt} \sin \theta \quad \frac{\partial \mathrm{~L}}{\partial \theta}=\mathrm{mabt} \dot{\theta} \cos \theta-\mathrm{mgb} \sin \theta
$$

and since

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\theta}}\right)-\frac{\partial \mathrm{L}}{\partial \theta}=0 \Rightarrow \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\theta}}\right)=\frac{\partial \mathrm{L}}{\partial \theta}
$$

Taking the time derivative :

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{mb}^{2} \dot{\theta}+\mathrm{mabt} \sin \theta\right)=\mathrm{mb}^{2} \ddot{\theta}+\mathrm{mab} \sin \theta+\mathrm{mabt} \dot{\theta} \cos \theta
$$

Equating terms:

$$
\mathrm{mb}^{2} \ddot{\theta}+\mathrm{mab} \sin \theta+\mathrm{mabt} \dot{\theta} \cos \theta=\mathrm{mabt} \dot{\theta} \cos \theta-\mathrm{mgb} \sin \theta
$$

Which yields:

$$
m b^{2} \ddot{\theta}+m b(a+g) \sin \theta=0
$$

and finally

$$
\ddot{\theta}+\frac{(\mathrm{a}+\mathrm{g})}{\mathrm{b}} \sin \theta=0
$$

In the small angle approximation, $\sin \theta \approx \theta$ so

$$
\ddot{\theta}+\frac{(\mathrm{a}+\mathrm{g})}{\mathrm{b}} \theta=0
$$

But this is the standard harmonic oscillator equation, where the period is given by

$$
\begin{gathered}
\mathrm{P}=\frac{2 \pi}{\omega} \\
\text { where } \omega^{2}=\frac{\mathrm{a}+\mathrm{g}}{\mathrm{~b}}
\end{gathered}
$$

Thus, the period of oscillation is

$$
P=2 \pi \sqrt{\frac{b}{a+g}}
$$

which reduces to $2 \pi \sqrt{b / g}$ if the acceleration is zero, identical with the standard equation of the period of a pendulum (in the small angle approximation).

