
PHYS 314
HOMEWORK #4

Due : 17 Feb. 2017
1.  Using the text' s notation, start with equations 2.44 and 2.45 in the text and show all the intermedi-

ate steps to derive equations 2.49 and 2.50.  (10)

Solution :  We use the book' s notation and start with :

x =
U

k
1- e-k t y =

- g t

k
+

k V + g

k2
1- e-k t

where U and V are initial horizontal and vertical velocities respectively.  The time of flight, T, is:

T =
k V + g

gk
1- e-k T

Our first step is to expand the exponential in the T equation.  This allows us to write:

T =
k V + g

g k
1- 1- k T +

1

2
k2 T2 -

1

6
k3 T3 ⇒ T =

k V + g

g k
k T -

1

2
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1

6
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divide through by k on the right:

T =
k V + g

g
T -

1

2
k T2 +

1

6
k2 T3

Multiply each side by g/(k V+g) and divide by T:

g

k V + g
= 1-

1

2
k T +

1

6
k2 T2

Rearrange :

1

2
k T = 1 -

g

k V+ g
+

1

6
k2 T2 =

k V
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+

1

6
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Multiply through by 2/k and we obtain eq. 2.47 in the text:

T =
2 V

k V + g
+

1

3
k T2 =

2 V / g

1+ k V / g
+

1

3
k T2

(1)

Expand the denominator according to:

1

1+ x
= 1- x + x2 ⇒

1

1+ k V / g
= 1- k V / g + (k V / g)2 + ...



Our equation (1) becomes:

T =
2 V

g
1- k V / g + k2 V2  g2 +

1

3
k T2

grouping according to k:

T =
2 V

g
+ k

1

3
T2 - 2

V2

g2

Now, since we have been assuming k is small all along, we can regard the case of small k as a 

simple perturbation to the case of no friction. This means we can estimate the time of flight (T on 

the left) by assuming the time on the right can be approximated by the time of flight in the no fric-

tion case.  The time of flight with no friction is 2 V/g in the book' s notation, so using this for the T2 

term on the right gives:

T =
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g
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1

3
·
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- 2
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g2
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g
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3
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=
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g
1-

k V

3 g

and this is equation 2.50 in the text.

2.  Using the text' s notation, complete the intermediate steps to derive equation 2.55 in the text. (10)

Solution :  Now we express the range (R') in the small k case as a perturbation of the range in the no 

k case.  We know the range for a projectile on level ground with no friction is :

R =
2 U V

g

where U and V are again the initial horizontal and vertical velocities.  The equation of motion in x is:

x =
U

k
1- e-k t =

U

k
k t -

1

2
k2 t2 +

1

6
k3 t3

using what are by now familiar series expansion techniques.  The flight ends when t = T, so the 

range is simply x(T) or:

R' = U T -
1

2
k T2

Using the value of T from problem 1:
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g
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3 g
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1
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+
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Keeping terms out to k:
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g
-

2 k V2

3 g2
-

1

2
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or :
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R' = R 1-
4

3

k V

g

which is equation 2.55.

3. A mass m moves in a circular orbit of radius ro under the influence of a central force whose 

potential is -k m / rn.  The total effective potential of the mass is

U =
- k m

rn
+

L2

2 m r2

where L is the constant angular momentum.  For what values of n will the circular orbit be stable 

under small oscillations (that means the mass oscillates about the circular orbit).

Solution :  To find stability conditions, we first find the equilibrium conditions, which requires us to 

find where the first derivative of the potential is zero :

d U

d r
=

k m n

rn+1
-

L2

m r3
= 0 ⇒ rn+1 =

m r3 k m n

L2

An equilibrium point is stable if the second derivative > 0.  Taking the second derivative and evaluat-

ing at the equilibrium point:

d2 U

dr2
= -

(n+ 1) n k m

rn+2
+

3 L2

m r4

I will write the rn+2 term as r · rn+1 so I can use the equilibrium value of rn+1.  For stability to exist, 

we must satisfy the condition:

-
(n+ 1) n k m

r m r3 k m n
·L2 +

3 L2

m r4
> 0

Cancelling out all common terms leaves only:

3- (n+ 1) > 0 ⇒ n < 2

Let' s do some simple plots and see if we can reproduce this result graphically.  We' ll choose easy 

numbers, and investigate the curves of :

f =
-1

rn
+

2

r2

for various values of n. The first graph shows the plot of f for values of n ≤ 2:
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In[55]:= Clear[f, r, n]

f[r_, n_] := -1  rn + 2  r^2

Plot[{f[r, 0.5], f[r, 1], f[r, 2]}, {r, 0.1, 10}, PlotLegends → "Expressions"]

Out[57]=
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The next graph shows the function for n>2:

In[23]:= Clear[f, r, n]

f[r_, n_] := -1  rn + 2  r^2

Plot[{f[r, 2.5], f[r, 3], f[r, 4]}, {r, 0.5, 4}, PlotLegends → "Expressions"]

Out[25]=
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You can see that the graphs for n <2 have stable minima, but the graphs for n > 2 show unstable 

extrema.

The next two questions are variable mass problems, the first likely less complex than the second.  

Please work together on these (if you do, write the names of all group members on your homework; 

these are problems worth struggling with, so please don’t try to find the answers on line or in texts).

4.  A spaceship of surface area A and initial mass mo and initial speed vo moves through an interstel-

lar dust cloud of density ρ.  As the ship moves through the dust cloud, the dust sticks to the ship and 

adds to the ship’s mass, but exerts no force on the ship.  

a) Explain why the rate at which mass accumulates on the ship is (5)
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dm

dt
= ρ A v

Solution : In a time dt, the space ship will move a distance v dt and sweep out

a volume of space equal to A v dt. If it encounters dust with a mass density of ρ,

the total amount of dust it encounters in a time dt is just ρ A v dt. Assuming

all the dust sticks to the ship, the amount of mass accreted is simply :

dm = ρ v A dt

from which our equation derives trivially.

b) Can you use the conservation of energy in this problem?  Explain your answer.  Is there any 

conservation law you can use in this problem?(5)

Solution : We cannot. The collisions between the dust and the ship are totally inelastic. We can,

however, use conservation of momentum since

there are no external forces acting on the dust / ship system.

c) Find an expression for the velocity of the spaceship as a function of time. (15) 

Solution : We use Newton' s second law :

d

dt
(m v) = m

dv

dt
+ v

dm

dt
= 0 (2)

Since there are no external forces acting on the ship, we know its momentum is conserved, which 

allows us to write:

m v = mo vo

Using these results in equation (2) :

mo vo

v

dv

dt
+ v (ρ v A) = 0

Rewriting :

dv

v
= -

ρ A v2

mo vo
dt ⇒

dv

v3
= -

ρ A

mo vo
dt

Integrating both sides :

-1

2 v2
=

- ρ A

m0 vo
t + C

Since v = vo when t = 0, we can evaluate C:

C =
- 1

2 vo
2

and we have:
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1

v2
=

2 ρ A t

mo vo
+

1

vo
2

5.  A raindrop falling through a cloud accretes matter as it falls.  Assume the drop is always spheri-

cal and accretes matter according to :

dm

dt
= π r2 k v

where r is the instantaneous radius of the drop, k is a constant, and v is the instantaneous speed of 

the drop.  If the drop starts from rest when it is very small (say r approaching 0), show that the 

acceleration is constant and equal to g/7.  (Note:  dr/dt is the rate of increase of the radius of the 

drop; do not confuse this with the velocity of the drop.  You should derive a differential equation 

which will require you to employ physical reasoning to solve.) (25)

Solution : This is another variable mass problem.  In this case, there is an external force, gravity , so 

we can write Newton' s second law :

F =
d

dt
(m v) = m g

or :

m
dv

dt
+ v

dm

dt
= m g (3)

and we want to find the acceleration of the raindrop, dv/dt.  

First we recognize that since the drop is always spherical, we can write its mass at any time as :

m (t) =
4

3
π r3 ρ (4)

where r is the instantaneous radius of the drop and ρ is the density of water.  Taking the time deriva-

tive of this gives us:

dm

dt
= 4 π r2 r ρ (5)

where it is important to remember that r is the radius of the drop, and r  is the rate at which the radius 

of the drop grows.  Since we have two expressions for dm/dt, we can equate them to find:

π r2 k v = 4 π r2 r ρ ⇒ v =
4 ρ

k
r (6)

and differentiating one more time :

dv

dt
=

4 ρ

k
r
..

(7)

We rewrite equation (3) as:

dv

dt
+ v

m

m
= g (8)

6     phys314-2017hw4s.nb



Now, we use the expressions from eq. (7), eq. (6), eq. (5) and eq. (4) in eq. (8) :

4 ρ

k
r
..
+

4 ρ

k
r

4 π r2 r ρ

4
3 πr3 ρ

= g

Rearranging gives us:.

r
..
+

3 (r )2

r
=

k

4 ρ
g (9)

Well, you say.  This is not too horrible a second order non linear differential equation.  I' ll just pop 

this into Mathematica :

In[28]:= DSolver''[t] + 3 r'[t]^2  r[t] ⩵ c, r[t], t

(* where c is the constant k g/4 ρ) *)

Out[28]= r[t] → InverseFunction- Hypergeometric2F1
1

2
,
4

7
,
11

7
, -

2 c #17

7 C[1]
 #14 7 +

2 c #17

C[1]


4 7 C[1] + 2 c #17 &[t + C[2]],

r[t] → InverseFunction

Hypergeometric2F1 1
2
, 4

7
, 11

7
, -

2 c #17

7 C[1]
 #14 7 +

2 c #17

C[1]

4 7 C[1] + 2 c #17
&[

t + C[2]]

And you probably figured that out by just looking.  So now, let’s try it as physicists.  We have a 

second order equation which must equal a constant on the right. Well, let’s try a solution of the form:

r (t) = c t2

where c is some constant.  Let’s use this as our trial solution and see what we get:

r = 2 c t and r
..
= 2 c.

 Substitute these values into eq. (9) :

2 c+
3 (2 c t)2

c t2
=

k g

4 ρ

2 c+ 12 c =
k g

4 ρ
⇒ c =

k g

56 ρ

And how does this help?  Go back to equation (7) and use this value of c to compute dv/dt:

dv

dt
=

4 ρ

k
r
..
=

4 ρ

k
(2 c) =

8 ρ

k
·

k g

56 ρ
= g / 7
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