PHYS 301 HOMEWORK \#8
 Due : Friday 6 April 2017

1. Starting from the equation describing the element of length :

$$
\begin{equation*}
\mathrm{d} \mathbf{l}=\mathrm{h}_{\mathrm{i}} \mathrm{dq}_{\mathrm{i}} \hat{\mathbf{i}}_{\mathbf{i}} \tag{1}
\end{equation*}
$$

where dl (also written as ds) is the element of length, h represent the scale factors and q represents the spatial coordinates,
a) write dl in cylindrical polar coordinates
b) for the specific case of a cone defined by

$$
z^{2}=x^{2}+y^{2}
$$

show that the scalar element of length can be written as

$$
\mathrm{ds}=\sqrt{2+\mathrm{z}^{2}\left(\phi^{\prime}(\mathrm{z})\right)^{2}}
$$

2. Do parts a), b) and c) for problem 14.27 from Felder and Felder (the online chapter on Calculus of Variations). This will complete the proof of why Euler - Lagrange works.
3. Start with eq. (1) from above and show that ds on the surface of a sphere of radius r is given by eq. (6.41) in Marion/Thornton.
4. Problem 14.51 from Felder and Felder.
5. Problem 14.52 from Felder and Felder.
6. Problem 14.53 from (oh, guess). You may use Mathematica' s DSolve function to solve the resulting ODE, but do the ODEs in the other problems by hand.
