
PHYS 314
HOMEWORK #8

Due : Friday 7 April 2017
1.  Starting from the equation describing the element of length :

dl = hi dqi q i (1)

where dl (also written as ds) is the element of length, h represent the scale factors and q represents 

the spatial coordinates, 

a) write dl in cylindrical polar coordinates

Solution :  Using the scale factors and unit vectors for the cylindrical polar coordeinate system, we 

have :

dl = ds = dρ ρ + ρ dϕ ϕ

+ dz z

b) for the specific case of a cone defined by

z2 = x2 + y2

show that the scalar element of length can be written as

ds = dz 2+ z2 (ϕ ' (z))2

Solution :  Taking ds· ds we get :

ds2 = (dρ)2 + ρ2 (dϕ)2 + (dz)2 ⇒ ds = (dρ)2 + ρ2 (dϕ)2 + (dz)2

For this specific case, we have:

z2 = x2 + y2 = ρ2

which impllies that z = ρ and dz = dρ, making these substitutions gives us :

ds = (dz)2 + z2 (dϕ)2 + (dz)2 =

2 (dz)2 + z2 (dϕ)2 = (dz)2 2+ z2 dϕ

dz

2

= dz 2+ z2 (ϕ ' (z))2

2.  Do parts a), b) and c) for problem 14.27 from Felder and Felder (the online chapter on Calculus 

of Variations).  This will complete the proof of why Euler - Lagrange works.



Solution :  We will follow the treatment suggested by the book to show that 

δy' =
d

dx
δy

We start by drawing two curves

The upper curve is just the lower curve translated up by one unit.  Therefore, the two curves have 

the same shape and thus the same slope at each point, and δy’ is the same everywhere.  

δy

δy

Therefore, the distance between the two curves is the same everywhere, and we have that δy is the 

same at all points, meaning that d/dx (δy) = 0; the shape of the two curves is the same, the slope of 

the curve is the same everywhere, so that δy' = 0 also.

Now, let the two curves vary by an amount that increases as x increases:

δy

δy

Now, we see that δy clearly increases as x increases, so that d/dx (δy) > 0.  The slope of the tangent 

also increases as we go from left to right; since δy' is the change in the slope of the line, we can see 

that δy' is related to the rate at which δy changes, so that δy' = d/dx (δy).  This completes the proof 

of the Euler - Lagrange equation.
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3.  Start with eq. (1) from above and show that ds on the surface of a sphere of radius r is given by 

eq. (6.41) in Marion/Thornton.

Solution :  For the spherical polar coordinate system, the coordinates are {r, θ, ϕ} and the scale 

factors are {1, r, r sin θ}, so that the element of length in this coordinate system is :

ds = dr r + r dθ θ

+ r sin θ dϕ ϕ



and taking the dot product gives us:

ds2 = (dr)2 + r2 (dθ)2 + r2 sin2 θ (dθ)2

On the surface of a sphere, r is constant so that dr = 0 leaving us with:

(ds)2 = r2 (dθ)2 + r2 sin2 θ (dθ)2

or :

ds = r (dθ)2 + sin2 θ (dϕ)2

If we set f = ds and apply the Euler-Lagrange equation, we will obtain the equaton for the shortest 

path between two points on a sphere.  We use the word geodesic to describe the shortest path on a 

surface. 

4.  Problem 14.51 from Felder and Felder.

Solution : We wish to minimize the integral

 y' 2 dx

subject to y (0) = 0 and y(1)=1 

Our function is f= (y ')2, so the function that minimizes the integral satisfies:

d

dx

δf

δy'
-
δf

δy
= 0

There is no explicit dependence on y, and δf/δy’ = 2y’, so we have that   

2
dy

dx
= c ⇒ y = 2 c x + k

where c and k are constants.   y(0)=0 ⇒ k=0, and y(1)=1 ⇒ c=1/2, so the function that minimizes 

this integral is y = x/2.

5. Problem 14.52 from Felder and Felder.

Solution:  To minimize

 (y')2 + x2 dx

we set f = (y')2 + x2
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and solve the Euler-Lagrange equation.  First we find: 

δf

δy'
=

y'

(y')2 + x2

and
δf

δy
= 0

Since there is no explicit y dependence of f, we can set δf/δy’ to a constant and write:

y'

(y')2 + x2

= c ⇒ (y')2 = c2 (y')2 + x2

or 

(y')2 1- c2 = c2 x2 ⇒
dy

dx
= k x

where k is just another constant.  This simple differential equation tells us that the curve that mini-

mizes the initial integral is simply

y =
1

2
k x2 + b

where b is another constant.

6.  Problem 14.53 from (oh, guess).  You may use Mathematica' s DSolve function to solve the 

resulting ODE, but do the ODEs in the other problems by hand.

Solution :  We minimize 

 x (y')2 + y2  x dx

subject to y (1) = 0 and y (2) = 4

Applying Euler - Lagrange, we have :

δf

δy'
= 2 x y' and

δf

δy
= 2 y / x

d

dx
(2 x y') - 2 y / x = 0

The first term is a total derivative, and the equation above becomes:

2 x y'' + 2 y' - 2 y / x = 0

We can solve this using DSolve:

In[230]:= Clear[y, x]

DSolve[{2 x y''[x] + 2 y'[x] - 2 y[x] / x ⩵ 0, y[1] ⩵ 0, y[2] ⩵ 4}, y[x], x]

Out[231]= y[x] →
8 -1 + x2

3 x


Alternately (and this begins to introduce us to the method of Frobenius), we can assume a solution 

of the form y = xp where p is some exponent to be determined.  We subsitute this into the differen-
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tial equation and find:

2 x (p (p- 1)) xp-2 + 2 p xp-1 - 2 xp-1 = 0

This gives us the equation:

[2 p (p- 1) + 2 p - 2] xp-1 = 0

or

2 p (p- 1) + 2 p - 2 = 0 ⇒ p2 = 1 or p = ± 1

Thus suggests a solution of the form

y = a x +
b

x

y (1) = 0 ⇒ a + b = 0 ⇒ a = -b

y (2) = 4 ⇒ 2 a -
a

2
= 4 ⇒ a = 8 / 3 and b = - 8 / 3

thus, y = 8 / 3 x-
1

x

and matches the solution from DSolve.
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