
USING BESSEL FUNCTIONS TO SOLVE THE PROBLEM OF 
A VIBRATING CIRCULAR MEMBRANE WITH 

ASYMMETRIC INITIAL CONDITIONS

The title says it all.  It might be good for you to review our solution to the vibrating circular mem-
brane with symmetric initial conditions before diving into this.

By now, you know what the recipe calls for :  write our general equation, substitute a trial solution, 
separate variables, then use boundary and initial conditions to determine coefficients.  

So, let' s begin.

The wave equation in cylindrical coordinates is :
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where v is the velocity of the wave, z is the height of the membrane at any time t and any distance r 
from the origin.

Our trial solution is clearly :

z r, f, t = R rF f T t
and after all requisite calculus and algebra we are able to separate variables to obtain these three 
ODES :
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We know the eigenfunctions of the first two ODEs are trig functions, and the eigenfunctions of the 
radial equation are the appropriate Bessel J and Y functions :

R r = A Jp k r + B Yp k r
Since we know the solution must be finite at r = 0, we can exclude the Y solutions (they go to 
infinity at r = 0).  Also, since we know the membrane must be tied down at the edges, we have that 
R (a)  = 0 where a is the radius of the membrane.  Thus, we know that :

Jp k a = 0 fl k a = ap,n or k =
ap,n

a

where the ap,n is the nthzero of the Bessel function of order p.

Now, if we combine the solutions to the three separated ODEs we get as a general solution :
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Next, we need to make use of our initial conditions.  In this case, our two initial conditions are :

z0 = 0 and z
°
o = ¶ s, r < ro, 0 < f < p

0. otherwise

In other words, the height of the membrane is zero everywhere at t = 0, and the vertical velocity has 
the value s inside a radius r0 in the upper half plane.  However, the vertical velocity is zero every-

where in the lower half plane, and is also zero in the upper half plane outside of r0 .

z (r, f, 0) = 0 means we can set all the D coeffcients to zero. However, since we do not have 
azimuthal symmetry in this case, we cannot set p = 0 as we did in class (when doing the symmetric 
case).  Taking the time derivative of equation (1) and setting t = 0 yields :
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(and the C coefficient is just absored into other constants).  Now, we take equation (2) and split it 
into two parts by  extracting the p = 0 term from the double sum (you will see shortly why we do 
this) :
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Make sure you understand the choice of subscripts in each summation.  Now, if you look carefully 
at eq. (3), you will see that this is merely a Fourier series in which the coefficients are written in 
terms of Bessel functions.  The p = 0 term is simply what we have called the a0  2 term, so that we 
have:
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We integrate from 0 to 2 p to cover all azimuthal angles; remember that the function we are writing 
as a Fourier series z° 0 is zero on (p, 2p).

 Similarly, the a and b coefficients are expressed as:
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The cos integral yields zero (so all the a coefficients are 0), and the b coefficients are :

bp = ¶ 2 s  p, r < r0 for p odd

0, otherwise

Remember that our goal is to find expressions for the coefficients E and F in equation (1).  The 
Fourier coefficients we just found tell us that all the Fpn coefficients are zero for p > 0 and Epn  = 0 
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for even values of p.  We can find expressions for F0 n and the odd Epn by recognizing that equations 

(4) and (5) are the Fourier Bessel series of the right hand sides of those equations.  Using the algo-
rithm we motivated in class for finding the coefficients of Fourier Bessel series, we can write: 
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Evaluation of these integrals is best done by computer; we substitute these expressions for the 
coefficients into equation (1) to produce our complete and final answer.
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