Chemistry 214, Quantitative Analysis Laboratory
Fall 2014 Syllabus

Chem 214-002, Quantitative Analysis Laboratory (1 credit hour), Tuesdays/Thursdays 2:30-5:20 pm, FH-313
Prerequisite: Chem 106/102 and 112; Chem 222/224 and 226 as well as active attendance or completion of lecture Chem 212.

Instructor: Dr. Conrad Naleway
Office: Flanner Hall 200C
Phone: (773) 508-7115
Email: cnaelewa@luc.edu
Office Hours: Tuesdays/Thursdays 1:30-2:30pm and by appointment.

Graduate Teaching Assistant (TA): Kathryn Renyer
Office: Flanner Hall 101
Phone: (773) 508-7667
Email: krenyer@luc.edu
Office Hours: Wednesdays 10-11am and by appointment.

Instructor (temporary): Dr. Katrina Binaku
Office: Flanner Hall 104
Phone: (773) 508-8715
Email: kbinaku@luc.edu
Office Hours: Wednesdays 9-10am, Thursdays 9-11am, and by appointment.

Course Objectives:
1) To acquaint students with some of the classical and modern techniques in analytical chemistry
2) To teach wet chemical lab skills, efficiency and planning of experiments
3) To teach critical evaluation of experimental results
4) To become familiar with conventional data collection in commercial and academic laboratories.

Attendance Policy: It is a requirement for students be present for every scheduled lab session. Additional time will not be provided to students who are absent from lab. Students are allowed to attend only the section in which they are enrolled. Students cannot attend the Monday/Wednesday lab section under any circumstances; this is university policy. Students must have required materials and be properly dressed to perform experiments in the laboratory. Make-up exams and quizzes will not be given unless approved by the Instructor.

Footwear/Clothing: Closed toed, closed heel shoes are required [no slippers, Crocs, perforated shoes, etc.] No skin on the foot can be exposed (ballet flats are not allowed unless socks are worn). Long pants recommended. Shorts and skirts are not allowed, as bare skin on the lower extremities is a safety hazard: Be advised, concentrated acids/bases are used in many experiments. Lab coats are required, must be worn at all times during lab experiments. Students will be sent home if proper clothing/footwear are not worn; this counts as an absence. A safety lecture is given the 1st day of class; attendance is required in order to perform lab experiments. Students must sign a safety sheet acknowledging understanding, commitment to follow policies.

Required Materials:
- One bound (NO SPIRAL) laboratory notebook such as a national-brand Composition book.
- An inexpensive calculator having logarithm (base 10 and e), exponential, and trig functions.
- A pair of lab goggles [safety glasses NOT allowed] which must be worn at all times in the laboratory.
- Lab coat. Offers a layer of protection against hazards. It must be worn at all times during lab experiments. Any color is fine, must be long sleeve. Can be found on Amazon or at the bookstore.
- Laboratory procedures and handouts (posted in Sakai)
- Non-erasable pen

Bring all materials to every lab session. For some experiments, it may be advantageous to bring a laptop computer for data entry, analysis, and calculations. If it is deemed to be a distraction/hazard, TA or Instructor may request that it be put away.

Note: Cell phones are NOT allowed for use during quizzes, the midterm, or final exam.

Laboratory Procedures:
Instructor and TA will explain the procedures and goals for each assignment prior to its execution. Students will be given handouts that are pertinent to each lab assignment beforehand. Experiment handouts will also be available on Sakai for viewing at any time. A semester laboratory schedule, detailing projected start dates for each experiment, pre-lab quiz, lab report due dates, and other information will be provided on the first day of class. This schedule will be posted on Sakai and in the laboratory, FH-313.

Experiment Unknowns:
In most cases, you will be assigned a standard unknown sample whose composition is known to at least FOUR significant figures. **You will determine the concentration of your unknown sample and be graded on how accurately your determinations reflect the true composition.** Make sure to write down the unknown # in your lab notebook, in addition to signing for it on unknown sheets provided by the TA.

For each experiment’s unknown assignment, you will report the values of your individual unknown determinations, the mean concentration (or percent composition) and the standard deviation associated with the overall determination. You will be permitted to repeat each lab only twice as time permits in order to earn a better accuracy grade. However, you will need to analyze a new unknown sample and it must be undertaken in the period established on the laboratory schedule. To accomplish this, **you will need to report your results and calculations on SAKAI as soon as completed.** You will be graded on the accuracy of the results and can thus decide if you want to repeat the experiment. Graded accuracy will determine about 69% of your overall grade.

Laboratory Notebook:
One bound notebook is required. Notebooks must be completed in PEN. Detailed notebook requirements are listed later in the syllabus. Briefly, the notebook must contain all data, observations assembled during each experiment. It should be organized but not necessarily perfect and thus can contain strikeouts.

Students must come to lab prepared in order to optimize their lab efficiency. At the start of **every NEW experiment* each student must have written in their notebook:**

1) The title of the experiment and the date
2) A paragraph introduction to summarize the lab experiment’s purpose, background information, and an overview that may include a very brief procedure synopsis to aid in getting started. The first sentence of the introduction should include the purpose of the lab experiment.
Instructor and/or TA will review and initial this portion of the lab notebook (while pre-lab quiz is being taken). and will prevent a student from starting a lab if the notebook is not satisfactorily completed. The student will not be allowed to start the new lab experiment until the notebook is filled out with these requirements.

Laboratory Reports:
Lab reports are to be computer generated and must follow the format defined later in the syllabus. All data sets must be included in the final report. The lab report will thus contain the data from the first attempt and experiment ‘redo’ attempts. Final accuracy will be determined as the better of the two reported findings. Graded lab reports will determine 15.3% of your overall grade (see breakdown below).

Lab report due dates are located on the semester schedule. Lab reports will not be accepted via email unless otherwise specified. Reports must be printed and handed in at the beginning of lab on the due date. Lab reports turned in late will receive a penalty of 10% each day the report is late and result in a grade of 0 if not received within one week of the established due date. In order to help students better address deficiencies in content within the initial lab report; the first lab report (only) may be resubmitted after grading to receive at most ½ the lost points. Please be sure to discuss any questions, concerns about lab report format or grading with the TA or Instructor.

Over the course of the semester 8 lab experiments will be performed. You are required to complete all of the lab experiments and turn in unknown sample results for an accuracy grade for each experiment. Writing skills are important to express/explain test results and other important information in the “real world.” We realize that completing lab reports is labor intensive. Therefore, you will only write lab reports for four (4) of labs in this course.

The following list* includes the experiments for which a completed lab report is required:
1) Acid-Base Titration: Determination of KHP in Unknown (Lab 1)
2) Spectrophotometric Determination of Iron (Lab 4)
3) EDTA Determination of Ca and Mg via Titration and Ion Chromatography (Lab 5)
4) Assay of SO₃ by Gravimetric Analysis of Sulfate (Lab 6)

*At the discretion of the Instructor or TA, this list can be modified at any time over the course of the semester.

Laboratory Exams:
Two written exams will be given which cover concepts pertaining to all of the laboratory experiments. The Midterm exam will include Experiments 1-4 and the Final exam will include Experiments 5-8. Exams will cover the theory as well as related calculations. These exams account for 3.8% of the course grade.

Laboratory Quizzes (Pre-lab Quizzes):
Before the start of each new experiment a written pre-lab quiz will be given asking questions in regard to the procedure and calculations to determine preparedness for the lab. Quizzes will be given during the first 15 minutes of lab. Thus, one MUST be punctual in getting to lab on time! If one arrives late to lab, no extra time will be given to complete the quiz. Quiz answers must be written in pen or credit will not be given. These quizzes account for 4.1% of the course grade.
Academic Honesty
Instructor and TA encourages students to consult one another during lab experiments and outside of class. Students can converse, brainstorm, and work through questions together but copying other students' work and presenting it as one's own is unacceptable. There is a difference between sharing knowledge and cheating.

If it is determined that lab reports or other materials in this course are plagiarized or have been shared between students (current or past), no credit will be given for the assignment. Cases of suspect academic dishonesty will be handled according to University policy and guidelines. Please review Loyola University Chicago’s policy on Academic Integrity via this link: http://www.luc.edu/academics/catalog/undergrad/reg_academicintegrity.shtml

Grading Policy
The established grading policy is subject to change at Instructor and/or TA discretion. Please note the University uses a +/- grading scale system and it will be implemented in this course.

<table>
<thead>
<tr>
<th>Grading Category</th>
<th>Pts</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Findings (Accuracy)*</td>
<td>1800</td>
<td>69.0%</td>
</tr>
<tr>
<td>Detailed Laboratory Reports</td>
<td>400</td>
<td>15.3%</td>
</tr>
<tr>
<td>Lab Quizzes</td>
<td>108</td>
<td>4.1%</td>
</tr>
<tr>
<td>Lab Notebook</td>
<td>200</td>
<td>7.8%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>50</td>
<td>1.9%</td>
</tr>
<tr>
<td>Final exam</td>
<td>50</td>
<td>1.9%</td>
</tr>
<tr>
<td>Total</td>
<td>2608</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*6 labs @ 200pts/each, 2 labs @ 100pts each for accuracy, EDTA lab 200pts for titration, 200pts for IC

Typical Grading Scale* (%): A 100-94.0, A- 93.9-90.0, B+ 89.9-86.9, B 86.8-83.0, B- 82.9-79.9, C+ 79.8-77.0, C 76.9-72.9, C- 72.8-70.0, D+ 69.9-67.9, D 67.8-63.0, D- 62.9-60.0, F ≤ 59.9
*subject to change at the discretion of Instructor.

Lab Report and Notebook Grading Rubrics
The following is a generous guide provided by the Instructor with a rough estimate of systematic grading of lab reports and notebooks. Points can be redistributed at the discretion of the Instructor and TA.

<table>
<thead>
<tr>
<th>Lab Report</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>4</td>
</tr>
<tr>
<td>Purpose</td>
<td>6</td>
</tr>
<tr>
<td>Materials</td>
<td>10</td>
</tr>
<tr>
<td>Procedure</td>
<td>15</td>
</tr>
<tr>
<td>Results</td>
<td>35</td>
</tr>
<tr>
<td>Conclusion</td>
<td>20</td>
</tr>
<tr>
<td>Grammar/Formatting/Spelling</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

Grade Assignment:

<table>
<thead>
<tr>
<th>Points Range</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2258 - 2508</td>
<td>A- to A</td>
</tr>
<tr>
<td>2007 - 2257</td>
<td>B-, B, or B+</td>
</tr>
<tr>
<td>1756 - 2006</td>
<td>C-, C, or C+</td>
</tr>
<tr>
<td>1505 - 1755</td>
<td>D-, D, or D+</td>
</tr>
<tr>
<td>Below 1504</td>
<td>F</td>
</tr>
</tbody>
</table>
Notebook

<table>
<thead>
<tr>
<th>Points</th>
<th>Notebook*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table of Contents</td>
</tr>
<tr>
<td></td>
<td>Title of experiment (1.5 pts/experiment)</td>
</tr>
<tr>
<td></td>
<td>Introduction (signed**, 3 pts/experiment)</td>
</tr>
<tr>
<td></td>
<td>Results/ Raw Data and Calculations (11.5 pts/experiment)</td>
</tr>
<tr>
<td></td>
<td>Conclusion (4 pts/experiment)</td>
</tr>
<tr>
<td></td>
<td>Organization (sections labeled, writing legible)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

*Point breakdown based on 9 experiments completed, this may change based on the progress of the course.

**Unsigned Introduction sections will receive no credit.

SEE THE FOLLOWING PAGES FOR THE LAB REPORT FORMAT & LAB NOTEBOOK REQUIREMENTS

Services for Students with Disabilities (SSWD) Policy: Necessary accommodations will be made for students with disabilities who procure a SSWD letter. Do discuss your academic needs with the Instructor as soon as possible. However, to receive any accommodations self-disclosure, proper documentation, and registration with the SSWD office at Loyola University Chicago is required. Accommodations cannot be made until the Instructor receives proper documentation. Furthermore, accommodations are not retro-active and begin only once appropriate documentation has been received by the Instructor in a timely manner. Only those accommodations that are specifically listed in the formal SSWD letter will be provided. Policies and procedures for SSWD can be found here: http://www.luc.edu/sswd/
Lab Report Format and General Guidelines
CHEM 214: Quantitative Analysis Laboratory

Lab reports for Quantitative Analysis should be more detailed and complete than reports in the past for General or Organic Chemistry. This is an upper division lab, and more thoroughness is expected of the student. The report write-up is a VERY IMPORTANT part of a laboratory based course, especially at the junior/senior undergraduate level and for graduate level work.

Lab reports consist of the following elements:

Title page – lab experiment name and number centered on the page; your name, lab partners name (for partner labs only), unknown #, and date the report is due should be placed in the lower right hand corner of the title page.

Purpose – brief statement of the reason for performing this experiment

Materials – two separate lists: one for a listing of all equipment (including the balance used) and the second list for chemicals used (including any unknowns, but excluding any solutions the student makes)
 - Concentrations of solutions used should be included. Include concentrations of stock solutions, not concentrations of solutions made. Concentrations of solutions made should be under the results section.

Procedure – this is a list of all the steps that you did to perform the lab, including any changes that you may have made to the original printed procedure.
 - This can be summarized from that listed in the lab handouts but must be rewritten in your own words! Do not plagiarize
 - It must be so clear that anyone not familiar with the lab would know exactly what to do.
 - It should not contain the actual masses, volumes, etc. used by the student.
 - Be careful how you write your prep instructions for solutions. You will dissolve/dilute chemicals in a volume smaller than what the final volume will be and then dilute to the final volume mark. For example: Dissolve 12 g KOH in 300 mL DI water, dilute up to 500 mL mark, and shake to mix well.

Results – list data obtained, such as volumes measured, weights, temperatures, in a table format
 - Multiple trials must always be done to verify data as having good precision. All data must be shown, including repeat lab data. Teaching assistants will grade lab reports based on precision.
 - Data must be represented in table format with appropriate column and row headings and include the individually determined values, averages (for concentrations, percents, unknowns, etc.), standard deviations, and other necessary values. When applicable include units in column headings i.e. “NaOH volume (mL)” or “mL of NaOH.” Tables must be labeled with appropriate brief titles describing the contents within a table.
 - Statistical analysis of your data should also be put in this section.
 - If applicable, graphs should go in this section, and they must be clearly labeled with a title and proper x axis and y axis names as well as units. Use Excel to prep graphs.
• Include calculations labeled appropriately with units, chemical identity, and properly identifying what is being calculated. Include the trial # the calculation is completed for.
• Include general equations corresponding to each calculation necessary i.e. general equation for dilutions (example below), average, standard deviation, ppt, etc. (ex.: Calculation for volume of HCl for 0.1M HCl). The calculations may be written, but please write them neatly so they can be read and understood.
 o Show an outline of equation being used and at least one example with your numbers
 o ex.: \[m_1v_1 = m_2v_2 \]
 \[12\text{M} \times (v_1) = 0.1\text{M} \times (1000\text{mL}) \]
 \[v_1 = 8.33\text{ mL} \]
 o Please utilize leading zeros before the decimal point (0.1mL and not .1mL).
• A paragraph statement of the results must also be present to interpret/summarize the data shown in tables and graphs.
• If graphs/figures are included, such as spectra or chromatograms, they should be accompanied with a proper label i.e. Figure 1, and brief description directly below it.

Conclusion – a restatement of your results, and what the results mean
• Include a detailed analysis of error (at least 3 errors). This should be done based on the students own data and results. An analysis of error can also be done on theoretical errors as well though the student may not have made these errors.
 o How does the error change the outcome (concentration higher/lower than it should be, etc.)? How does the error affect the subsequent steps in the experiment?
• How can the experiment be improved and/or made simpler?
• How can the student’s technique be improved?

Additional Considerations
• Order is also important for excellent scientific work – the lab report write-up must follow the order listed on these directions.
• Lab reports should have page numbers specifically located in the bottom center of each page. Please staple your lab reports before handing them in.
• Feel free to print double-sided; we are a sustainable university after all!
• All parts of this report must be typed (calculations are an exception). Please use 12 point font, 1.5 lines spacing for paragraphs, and 1 inch margins.
• Please keep entire tables on a single page. If you must split up a table, remember to include column and row headings again on the next page.
• Reports should have good spelling, sentence structure, etc. Do not use run-on sentences, fragments, or personal pronouns (I, we, me, etc.).
• Take the time to check over your work and re-read your report to make sure that what you wrote is clear and makes sense.

The following has been said:
“A student could do mediocre work and write up an excellent lab report, and the work will be thought of as wonderful. A student could do wonderful work and write it up poorly, and the work will be thought of as mediocre.”
Lab Notebook Guidelines and Grading Rubric

NOTEBOOK MUST BE COMPLETED IN PEN

Leave the first 2 pages of the notebook blank. At the top of these two pages please write TABLE OF CONTENTS. Over the course of the lab, label the pages in the lab notebook. Then in the table of contents simply write the name of each experiment. Next to the name, write the page # that the experiment starts on. It does not need to be more detailed than that.

On every day of lab work, the date should be written in the notebook at the beginning of class. This will allow you to keep track of what was completed on a particular date, including solutions prepared, experimental work and calculations.

Each of the sections of the notebook should be labeled using roman numerals and section headings as displayed below.

At the start of each new experiment the following is required in the notebook at the beginning of lab (i.e. completed before coming to lab):

I. Title of experiment, date
II. Introduction: A paragraph synopsis/overview of what the point of the experiment is, methods (titration, precipitation, etc.) or instrumentation (if applicable) utilized in the experiment. From this short paragraph, someone reading your notebook will have a basic idea of what the experiment entails. The FIRST SENTENCE of the introduction should state the purpose/what will be discovered in the particular experiment. This paragraph can be roughly ½ a page but no more than 1 page long.

Note: Instructor or TA will initial these sections for each experiment. It is the student’s responsibility to get their notebook signed. These required initials count towards the point value of the notebook. If the section is not initialed, 1pt deduction per missing signature, per experiment.

III. Procedure (optional)
If students find it helpful to write out the entire experiment’s procedure in their own words in detail, they can do so in their notebook in this optional section. It is not a requirement as students will have the printed experimental procedure to reference while completing each experiment.

IV. Results
First, the unknown number should be clearly written at the beginning of this section. This section, as described earlier in the syllabus, should contain only calculations for solutions you physically prepare in class, and all observations and pertinent data that is generated during the experiment. This includes but is not limited to color changes (initial solution color and endpoint color in a titration for example), initial/final buret
readings for all experimental trials, balance weights for solid samples, balance #, instrument settings, etc. Values written down should have units and chemical identity accompanying them i.e. 15.05mL of NaOH. All data should be written in pen. Strikeouts are acceptable as no notebook is perfect. If alterations or changes in an experimental procedure occur, this is the section to include that information as well.

V. Conclusion
Brief. Restate the purpose of the experiment and what was accomplished (one or two sentences that state your unknown number and what you found). If any major errors occurred in the experiment i.e. you accidently dumped out one of your samples, etc. state that here as well.

Example: The purpose of this experiment was to determine the percent sodium carbonate in an unknown sample. In unknown #12, it was determined that the unknown sample contained 39.57% sodium carbonate.

*Format Check: You can request a format check of your first lab report by your TA/Instructor.
Chem 214 Quantitative Analysis Schedule* (Fall 2014)

<table>
<thead>
<tr>
<th>Assignment Dates</th>
<th>Week #</th>
<th>Class #</th>
<th>Date</th>
<th>Proposed Experiment</th>
<th>Proposed Tasks**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Tuesday, August 26, 2014</td>
<td>Syllabus, Safety Lecture, Equipment Check-in</td>
<td>Review syllabus. Safety lecture. Lab equipment. Prep NaOH, HCl</td>
</tr>
<tr>
<td>Lab 1 Pre-Lab Quiz</td>
<td>2</td>
<td>1</td>
<td>Thursday, August 28, 2014</td>
<td>1) Determination of % KHP in an Unknown</td>
<td>Standardize NaOH solution</td>
</tr>
<tr>
<td>Lab 2 Pre-Lab Quiz</td>
<td>3</td>
<td>2</td>
<td>Tuesday, September 02, 2014</td>
<td>2) Determination of % Carbonate in an Unknown</td>
<td>Standardize HCl and titrate unknowns</td>
</tr>
<tr>
<td>Lab 1 (KHP) Lab Report Due</td>
<td>4</td>
<td>1</td>
<td>Tuesday, September 09, 2014</td>
<td>3) Vitamin C Redox Titration</td>
<td>Must complete lab #3 in 1 session; Continue REDOS for labs #1 & 2</td>
</tr>
<tr>
<td>Lab 3 Pre-Lab Quiz</td>
<td>5</td>
<td>2</td>
<td>Tuesday, September 16, 2014</td>
<td>4) Colorimetric Determination of Iron</td>
<td>REDOS for labs #1-3; clean flask for lab #4</td>
</tr>
<tr>
<td>Lab 4 Pre-Lab Quiz</td>
<td>6</td>
<td>1</td>
<td>Tuesday, September 23, 2014</td>
<td>5) EDTA Lab; Titration and IC Quantification of Ca and Mg</td>
<td>Prepare EDTA and Calcium Carbonate solutions; begin standardization</td>
</tr>
<tr>
<td>Lab 6 Pre-Lab Quiz</td>
<td>7</td>
<td>2</td>
<td>Tuesday, October 07, 2014</td>
<td>6) Gravimetric Determination of Sulfate</td>
<td>Heat/weigh crucibles with product.</td>
</tr>
<tr>
<td>Lab 5 (EDTA) Lab Report Due</td>
<td>8</td>
<td>1</td>
<td>Tuesday, October 07, 2014</td>
<td>FALL BREAK; NO CLASS</td>
<td>Bring Calculator, Lab Notebook! Must have assay results (including redos) for labs 1-4 submitted via SAKAI. Clean glassware for lab #5</td>
</tr>
<tr>
<td>Lab 7 Pre-Lab Quiz</td>
<td>9</td>
<td>1</td>
<td>Tuesday, October 14, 2014</td>
<td>7) Determination of Zn, Cu, Pb in Brass Alloy via AA</td>
<td>Digest unknown; standard prep; other prep; OR continue lab #6 REDO standard preparation; AA training and analysis; continue lab #6 REDO</td>
</tr>
<tr>
<td>Lab 8 Pre-Lab Quiz</td>
<td>10</td>
<td>2</td>
<td>Tuesday, October 21, 2014</td>
<td>8) Determination of Halomethanes in H2O by GC/MS</td>
<td>AA analysis; Lab #7 REDO; OR Start Lab #8 water extraction water extraction or GC-MS data processing</td>
</tr>
<tr>
<td>Lab 9 Pre-Lab Quiz</td>
<td>11</td>
<td>1</td>
<td>Tuesday, October 28, 2014</td>
<td>9) Quantify Target Analytes by Isotope Dil, LC/MS/MS</td>
<td>Sample preparation, etc.</td>
</tr>
<tr>
<td>Lab 6 (Sulfate) Lab Report Due</td>
<td>12</td>
<td>1</td>
<td>Tuesday, November 04, 2014</td>
<td>FALL BREAK; NO CLASS</td>
<td>ALL ASSAYS for labs 5-9 MUST be in SAKAI BY 11:59PM TONIGHT!</td>
</tr>
<tr>
<td>Lab FINAL and Check-out</td>
<td>13</td>
<td>1</td>
<td>Tuesday, November 11, 2014</td>
<td>NO CLASS</td>
<td>Bring Calculator! Final Notebook Check & Equipment Checkout.</td>
</tr>
</tbody>
</table>

*This schedule is subject to change at the discretion of the Instructor or TA at any point during the semester.

UNLESS OTHERWISE NOTED, LAB REPORTS ARE TO BE PRINTED OUT AND HANDED IN AT THE BEGINNING OF LAB ON THE DUE DATE. They will be considered late if not printed.

**Please be advised that these proposed tasks should be used as a guide and are under no circumstances the only tasks that can be performed. This is the bare minimum.

*This schedule is subject to alterations/changes at the discretion of the instructor or TA at any point during the semester.

Lab reports are to be printed out, double-sided (let’s save some trees), stapled, and turned in at the beginning of lab on the due dates. They will be considered late otherwise. Lab reports cannot be emailed unless otherwise noted.

**Please be advised that the proposed tasks column should be used as a guide and are under no circumstances the only tasks that can be completed. These are suggestions and the bare minimum of work.