SYLLABUS
CHEM 224 – Organic Chemistry B – 2nd semester
Spring 2009 - LOYOLA UNIVERSITY CHICAGO (LUC)

Lecture: #1362 Section 001 Tu+Thur 10:00 a.m. – 11:15 a.m. Flanner Hall 133
Discussion: #1363 Section 002 Tu 1:00 p.m. – 2:00 p.m. Cudahy 314 (may change)
 #1364 Section 003 Thur 1:00 p.m. – 2:00 p.m. Dumbach 236 (may change)

Sr. Lecturer: Dr. C. Szpunar
Office: Flanner Hall 213 Contact: 773-508-3128, cszpuna@luc.edu
Student Office Hours: Tues: 11:30-12:15, Wed and Fri: 11:30-1:15, + by prior appt

Suggested Materials:
 2. Molecular modeling kit, Darling, Prentice-Hall, Freeman (Maruzen), Proteus, or equivalent.
 3. Spiral or bound notebook for homework problems, recommended.

Grading (approx weight below) with grade guidelines: > 90% A; 75-90% B; 55-75% C; grading may be curved
 EXAMS – 2 – dates announced (subject to change, although unlikely) – **NO MAKE UPS** 45%
 • UNEXCUSED ABSENCES merit a zero score.
 • EXCUSED ABSENCES are handled on a case-by-case basis; grade weighting may be adjusted, depending on the circumstance(s); however, an excused absence MUST BE CORROBORATED and DOCUMENTED, e.g., accompanied by a note from the doctor, dentist, hospital rep, or funeral director; by a court summons; or by a plane ticket.
 QUIZZES – TBD – UNANNOUNCED (during lecture or discussion period or as take-home) 15%
 FINAL – date announced (scheduled by CAS), no alternative date/time, **NO MAKE UPS** 40%
 Homework - assigned per chapter/topic, feel free to work any/all problems to apply and master concepts.
 Optional Short Report (as detailed below, one option ONLY) ***BONUS (maximum of 3 - 5%)***

Course Objective: To guide, encourage, and foster the learning and understanding of Organic Chemistry – nomenclature, structures, properties, reactions, mechanisms, and syntheses – by the individual student, helping him/her to connect, extrapolate, integrate, and apply the many different aspects learned.

Student Outcomes: If successful, the student will learn how to …
 1. identify the various classes of organic compounds, their methods of preparation, and typical reactions.
 2. name and draw specific organic compounds.
 3. postulate a logical reaction mechanism for simple organic reactions.
 4. discriminate amongst relative stabilities of reaction intermediates.
 5. plan and write out multi-step syntheses using known functional group transformations.
 6. prepare for basic purification/separation techniques of organic compounds required in the laboratory.
 7. analyze and interpret data from various instruments used in separating and identifying organic compounds: IR, NMR, and UV-vis spectrophotometers and mass spectrograph.
Lecture and Discussion – Attendance and Attention: Important and required. Feel free to bring your books and modeling kit to class. Better yet, use them. Prepare for lecture by prior scanning of new material. Come prepared for discussion, ready to ask questions on assigned homework or yet unassimilated lecture material.

Phones and Pagers: Please be courteous and respectful of others. Silent mode during lecture and discussion. Not allowed in sight or within hearing during exams, subject to confiscation. NO phone conversations in lecture hall or in discussion class – before class, during class, after class – AT ANY TIME!

Academic Honesty: Essential, expected, and enforced. Dishonesty dictates consequences which may include: (1) notification of Chemistry Department Chair, student’s Department Chair, and CAS Dean, (2) documentation in the student’s official university record, and (3) dismissal from the university. Immediate consequences will include a ZERO on any item in question (quiz or exam). Please refer to the LUC Undergraduate Handbook on policies or the CAS website: http://ww.luc.edu/cas/pdfs/CAS_Academic_Integrity_Statement_December_07.pdf.

Study Strategies and Suggestions: One may approach the study of Organic Chemistry in a manner similar to tackling a new foreign language. Its study will provide a basis to understanding future material – building constantly, incessantly, and relentlessly on the structural and mechanistic information presented previously. Over two semesters, the course will cover functional groups, aliphatic and aromatic compounds, bonding, nomenclature, stereochemistry, conformational analysis, reaction mechanisms, multi-step syntheses, and spectroscopy. Because the course is cumulative and builds heavily on prior material, the best plan is to study Organic Chemistry regularly, every day, similar to practicing the piano. Collaboration on homework problems is encouraged, especially in a timely fashion. Experience dictates that positive outcomes (for exam and course grades) are directly proportional to working and understanding the assigned problems on a regular basis, i.e., applying the concepts learned to non-generic compounds.

Typically, Organic Chemistry is not efficiently self-taught. Overnight cramming will probably not produce success. The student should quickly read the chapter or segment to be covered BEFORE lecture to improve lecture comprehension. After lecture, careful detailed re-reading of the chapter or segment and focused working of the assigned problems are expected. If anticipating a passing grade of C, the minimal time per week devoted to Organic Chemistry is estimated at 4 hr for lecture/discussion, 3-6 hr for reading, and 3-6 hr for homework.

Suggested Homework Assignment:

Chap 15: 1, 4-18, 22-27, 30
Chap 16: 3-4, 7-8, 9 (a,b), 12-29, 32, 38-39, 45
Chap 17: 1-2, 4-22, 24-27, 30-32, 38, 40-52
Chap 18: 1-4, 6-12, 16-31, 34-40, 43-44, 47, 49, 51
Chap 19: 1-21, 25-32, 34-42, 44, 47, 56, 58
Chap 20: 1-33, 35-40, 45, 47, 50
Chap 21: 1-39, 43-48, 50-54, 66
Chap 23: 1-14, 16-17, 21-22, 24-26, 28-31, 32 (a), 33-36, 40, 41 (a,b), 52-55, 63
Chap 24: 3-6, 20, 32, 33
Chap 25: 1, 4, 8-9, 11-15, 32
Chap 26: 21-29
Optional BONUS Report
CHEM 224, Spring 2009, Dr. Szpunar

***BE SURE to include on the cover sheet or top right of pg #1:
 a) your name
 b) the date
 c) CHEM 224 – Tu/Thur
 d) lecturer’s name

**

Option 1 (max of 3%):

Visit the International Museum of Surgical Science and write a 1-2 pp. report (of 12-pt type, 1-in margins, double-spaced, and stapled) highlighting at least 2 of its exhibits. Attach a pamphlet from the museum on one of its exhibits.

You may wish to check to see if the # 151 Sheridan Bus (or equivalent) is more efficient than the CTA el; the bus may drop you closer to the museum, located just south of North Avenue Beach near the Polish Consulate on inner Lake Shore Drive.

1524 N. Lake Shore Drive
Chicago, IL 60610 USA
312.642.6502, fax 312.642.9516, info@imss.org
HOURS: May - September: Tuesday through Sunday 10 am – 4 pm
 October - April: Tuesday through Saturday 10 am – 4 pm
ADMISSION: Adults $6, Students & Seniors $3
(Be sure to check the website for the current fee and free day!)

Option 2 (max of 5%):

Choose a drug or health care product with organic functionalities featured in any of the following articles, or a similar publication:

- Chemical & Engineering News (C&E News), June 20, 2005, whole issue – “Top Pharmaceuticals, from aspirin to Viagra and more,” approx. 50 pharmaceuticals.

Write a 2-5 pp. report (of 12-pt type, 1-in margins, double-spaced, stapled, and including at least 3 pertinent references or citations at the end of the report). Include the following:

- Explain why the drug or health care product is of importance or interest to you.
- Identify all the functional groups from an organic perspective.
- Propose how you might verify the various functionalities spectroscopically, esp. via IR and NMR. Mention other methods, as applicable, i.e., via UV and MS.
- Suggest how you might change the molecule synthetically, at one functional site minimally, and state what you hope to achieve efficaciously by doing so.

*** due on or before Tuesday, March 31, by 2 p.m. ***

N.B.: Optional Bonus Report, either option, is intended for enrichment; points therefrom are only considered as a grade component IF student’s interim grade is a C or better (i.e., >55% approx weighting).
Lecture Outline (tentative, subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Chapter</th>
<th>Topic</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 13</td>
<td>12 + 13</td>
<td>Review – IR, MS, NMR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan 15</td>
<td>15</td>
<td>Conjugated Systems, UV Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 20</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan 22</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jan 27</td>
<td>16</td>
<td>Aromatic Compounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan 29</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feb 3</td>
<td>17</td>
<td>Aromatic Compounds - Reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb 5</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Feb 10</td>
<td>18</td>
<td>Ketones and Aldehydes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb 12</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Feb 17</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb 19</td>
<td>***</td>
<td>********** THURSDAY ******************</td>
<td>EXAM I (Chapters 15-18)</td>
</tr>
<tr>
<td>7</td>
<td>Feb 24</td>
<td>19</td>
<td>Amines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb 26</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mar 2-6</td>
<td>***</td>
<td>**************************************</td>
<td>SPRING BREAK ***</td>
</tr>
<tr>
<td>9</td>
<td>Mar 10</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar 12</td>
<td>20</td>
<td>Carboxylic Acids</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mar 17</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar 19</td>
<td>21</td>
<td>Carboxylic Acid Derivatives</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mar 24</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar 25</td>
<td>***</td>
<td>** last day to withdraw ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar 26</td>
<td>22</td>
<td>Condensations and Alpha Substitutions of Carboxyl Compounds</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mar 31</td>
<td>---</td>
<td></td>
<td>*** Optional BONUS report due ***</td>
</tr>
<tr>
<td></td>
<td>Apr 2</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Apr 7</td>
<td>***</td>
<td>********** TUESDAY ******************</td>
<td>EXAM II (Chapters 19-22)</td>
</tr>
<tr>
<td></td>
<td>Apr 9-13</td>
<td>***</td>
<td>**************************************</td>
<td>Holy Thursday, EASTER ***</td>
</tr>
<tr>
<td>14</td>
<td>Apr 14</td>
<td>23</td>
<td>Carbohydrates and Nucleic Acids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr 16</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Apr 21</td>
<td>24</td>
<td>Amino Acids, Peptides, and Proteins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr 23</td>
<td>25/26</td>
<td>Lipids / Intro to Polymers</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>April 28</td>
<td>***</td>
<td>**</td>
<td>Cumulative FINAL EXAM, Tuesday, 1 – 3 p.m., FH-133</td>
</tr>
</tbody>
</table>