Chemistry 224-001,002 – Summer 2011
Lecture Syllabus

Course: Chemistry 224, Organic Chemistry B, 3 Credits, Lecture and discussion
Prerequisites: Chemistry 223 and 225, or 222
Lecture: MWF 12:30-3:20 pm Dumbach Hall 122
Instructor: Dr. Sandra Helquist
Email: shelquist@luc.edu
Office: Flanner Hall 213
Office Hours: Immediately following class or by appointment.
Textbook:
Study Guide and Solutions Manual to above text, Wade & Simek (Recommended)
Organic Chemistry II As a Second Language, Klein (Recommended)
Molecular Modeling Kit (Recommended)

Course Content & Objectives Second semester of a two semester sequence for non-chemistry majors.
Organic chemistry of carbonyl compounds, amines, carboxylic acids and their derivatives, carbohydrates, lipids and proteins. The student should learn how to:
1. identify the various classes of organic compounds, their methods of preparation, and typical reactions.
2. name and draw specific organic compounds.
3. postulate a logical reaction mechanism for organic reactions.
4. discriminate among relative stabilities of reaction intermediates.
5. plan and write out multi-step syntheses using known functional group transformations, including syntheses of polyfunctional organic compounds.
6. name, draw and interpret the 2- and 3-dimensional structures of important biopolymers, and techniques for their synthesis and characterization.
7. analyze and interpret data from various instruments used in separating and identifying organic compounds including: IR, NMR, UV-vis and MS.

Course Materials Bring your books and modeling kit to class and use them! You should become familiar (if not already) with Blackboard (Bb), to be used for announcements, posting of course materials, grades, etc. Materials will commonly be posted on 4th floor Flanner as well. Emails to the class will be sent from Bb as necessary, so you must plan to regularly check your email account of record as listed on Bb. You will not be permitted to use a calculator on exams.

Class Attendance Vital for your learning: you are responsible for all material presented or handed out, as well as reading and problems recommended in lecture even if you are not in attendance for a course meeting. Attendance and Attention is important and required. Prepare for lecture by scanning the new material to be covered. Come prepared to engage in discussion, ready to ask questions on homework or yet unassimilated lecture material.

Academic Integrity Research and learning in chemistry relies heavily on collaborative efforts. You are encouraged to study with other students in and out of class, however, anything submitted for an individual grade must represent your own knowledge and understanding of the material. On exams you are expected to obtain information only from your own mind. Any student caught cheating will receive, at a minimum, a “zero” on the item and penalty up to automatic failure of the course, as well as referral to the Dean’s Office. For the full College of Arts and Sciences statement on academic integrity, visit:
http://www.luc.edu/cas/pdfs/CAS_Academic_Integrity_Statement_December_07.pdf

Disability Accommodations At times, students with disabilities may wish to avail themselves of the University’s ancillary services. Students requiring accommodations at the University need to contact the Coordinator of Services for Students with Disabilities, then provide documents and schedule arrangements with the instructor at the beginning of the term. Information is available at: http://www.luc.edu/sswd/

Tutoring Center This summer, the Center for Tutoring & Academic Excellence is offering free walk-in tutoring in several subjects, including Chemistry. Walk-in tutoring will run Monday-Thursday, beginning May 23rd and ending August 11th. Tutoring for all subjects is available 10am-5pm, and no appointments are needed.
Grading Your grade for Chemistry 224 will depend on the following factors: Quizzes 20% and Exams 80% Generally, 85.0% is the lowest A; 70.0% is the lowest B; 55.0% is the lowest C; 40.0% is the lowest D. Cutoffs for plus/minus grades will be determined by the overall distribution of course scores. These are the highest standards that will be used, however, small adjustments may be made, but only at the end of the semester.

Quizzes: No early quizzes, no make-ups! Quizzes may be given as individual or group exercises, or as take-home activities. Dates, time of quizzes may or may not be announced in advance. The lowest quiz score will be dropped at the end of the term. Keep up with the material so that you can gauge your level of understanding on the quizzes in order to identify areas of weakness prior to the exams. Any missed quiz receives a score of zero.

Exams: No early exams, no make-ups! Exams will begin promptly at 12:30. A normal lecture class will follow each of the midterm exams. Unexcused absence (traffic, weather, oversleeping, forgetfulness, etc) results in a ZERO. Excused absences require documentation of an emergency situation (note from doctor, hospital, funeral director, court summons) and will be handled on a case-by-case basis. Midterms: 1 hour, July 18 and August 1, 20% each. Final Exam: 2 hours, August 12, 40%, MANDATORY. Comprehensive, with emphasis on material covered after 2nd midterm. The final exam must be taken on the date scheduled or a grade of F will automatically result.

Exam Procedure: Cell phones, PDAs, mp3 players, calculators are not permitted. If seen or heard, will be confiscated along with exam copy and student will be asked to leave. Come to the exam with Photo ID, such as Loyola ID or Driver’s License, and leave visible on desk during exam to be checked. All purses, bags, jackets, etc must be left at front of room. Once the exam is distributed, if you exit the room (quietly, please), for any reason before time is up, your exam is considered complete and will be collected. I will return your exams (copies will be kept) for the midterms only. Scoring errors must be brought to my attention in person no later than one week after the exams are returned. The final exam cannot be returned.

Study Strategies and Suggestions One may approach the study of organic chemistry in a manner similar to tackling a new foreign language. Its study will provide a basis to understanding future material – building constantly, incessantly, and relentlessly on the structural and mechanistic information presented previously. Over 2 semesters, the course will cover functional groups, aliphatic and aromatic compounds, bonding, nomenclature, stereochemistry, conformational analysis, reaction mechanisms, multi-step syntheses, and spectroscopy. Because the course is cumulative and builds heavily on prior material, the best plan is to study organic chemistry regularly, every day, similar to immersing yourself in the study of the new foreign language, in the foreign country! Collaboration on homework problems is encouraged, especially in a timely fashion. Experience dictates that positive outcomes (for exam and course grades) are directly proportional to working and understanding the assigned problems on a regular basis, i.e., applying the concepts learned in lecture to non-generic compounds. Typically, organic chemistry is not efficiently self-taught. Overnight cramming will probably not produce success. The student should quickly read the chapter/segment to be covered BEFORE lecture to improve lecture comprehension. After lecture, careful detailed re-reading of the chapter/segment and focused working of the assigned problems are appropriate and expected. A list of textbook problems to be worked for each chapter is available on Blackboard. If anticipating a passing grade, the MINIMAL time per week in the summer devoted to Organic Chemistry is estimated at 9 hr for lecture/discussion, 6-12 hr for reading, and 6-12 hr for homework. Studying needs will vary for each student. It is therefore up to the individual student to devote the time necessary to achieve the desired grade.

Tentative Lecture Schedule

Our actual pace may vary from this schedule: if you miss a class for any reason, get the notes from a classmate!

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>July 4, 6, 8</td>
<td>JULY 4 HOLIDAY</td>
<td>Ch. 12-13: Review of IR, MS, NMR</td>
<td>Ch. 13-14: NMR, Ethers, Epoxides</td>
</tr>
<tr>
<td>2</td>
<td>July 11, 13, 15</td>
<td>Ch. 15: Conjugated Systems, Diels-Alder</td>
<td>Ch. 15-16: UV-vis Spectroscopy, Aromaticity</td>
<td>Ch. 16-17: Aromatic Compounds, EAS rxns</td>
</tr>
<tr>
<td>3</td>
<td>July 18, 20, 22</td>
<td>MIDTERM I Ch. 17: Directing Effects</td>
<td>Ch. 17-18: NAS, Side-Chain Rxns, Carboxyls</td>
<td>Ch. 18: Carbonyl Synthesis and Reactions</td>
</tr>
<tr>
<td>4</td>
<td>July 25, 27, 29</td>
<td>Ch. 19: Amines</td>
<td>Ch. 19-20: Amine Rxns, Carboxylic Acids</td>
<td>Ch. 20: Acid Synthesis, Acyl Transfer Rxns</td>
</tr>
<tr>
<td>5</td>
<td>August 1, 3, 5</td>
<td>MIDTERM II Ch. 21: Acid Derivatives</td>
<td>Ch. 21-22: Acid Derivatives, α-Carbons</td>
<td>Ch. 22: α-Carbon Reactivity, Syntheses</td>
</tr>
<tr>
<td>6</td>
<td>August 8, 10, 12</td>
<td>Ch. 23: Carbohydrates, Nucleic Acids</td>
<td>Ch. 24: Amino Acids, Peptides, Proteins</td>
<td>FINAL EXAM COMPREHENSIVE</td>
</tr>
</tbody>
</table>