SYLLABUS
CHEM 223- Accelerated – Organic Chemistry A – 1st semester
Summer 2012 - LOYOLA UNIVERSITY CHICAGO

Lecture/Discussion: #1700 / 1701 Sections: 003 / 004 M+W+F: 8:30 a.m. – 11:20 a.m. Dumbach Hall 120

Dr. C. Szpunar
Office: Flanner Hall 200B Contact: in person (preferred), by email: cszpuna@luc.edu , 773-508-3128
Student Office Hours (no appt needed): M and W: after class, 11:45 – 1:15, and *** by prior appt ***

Required:

Suggested / Recommended Materials:
1. Molecular modeling kit, Darling, Prentice-Hall, Freeman (Maruzen), Proteus, or equivalent
2. Spiral or bound notebook for homework problems

Optional Materials (found helpful by some students):
 (Pls see instructor BEFORE purchasing - only for students who may require an alternative study approach.)

Grading (approx weight below) with grade guidelines: > 90%, A; 75-90%, B; 55-75%, C; grading may be curved

MIDTERM EXAMS – 2 – dates scheduled and announced (subject to change, although unlikely)
 !!! NO MAKE UPS !!! NO EARLY EXAMS !!! 40%
 • UNEXCUSED ABSENCES merit a zero score.
 • EXCUSED ABSENCES are handled on a case-by-case basis; grade weighting may be adjusted, depending on the circumstance(s); however, an excused absence MUST BE CORROBORATED and DOCUMENTED, e.g., accompanied by a note from the doctor, dentist, hospital rep, or funeral director; by a court summons, plane ticket stub, hospital release form, obit, or other, as appropriate. With proper documentation, religious observance, official representation of the university, or personal emergency may constitute an Excused Absence.

QUIZZES – 3 – dates announced (subject to change, although unlikely) !!! NO MAKE UPS !!! 20%
HOMEWORK - assigned per topic, see Suggested Homework Assignment, below. 5%
FINAL EXAM 35%

Course Objective: To guide, encourage, and foster the learning and understanding of Organic Chemistry – nomenclature, structures, properties, reactions, mechanisms, and syntheses – by the individual student, helping him/her to connect, extrapolate, integrate, and apply the many different aspects learned.

Student Outcomes: If successful, the student will learn how to …
1. identify the various classes of organic compounds, their methods of preparation, and typical reactions.
2. name and draw specific organic compounds
3. postulate a logical reaction mechanism for simple organic reactions.
4. discriminate amongst relative stabilities of reaction intermediates.
5. plan and write out multi-step syntheses using known functional group transformations.
6. prepare for basic purification/separation techniques of organic compounds required in the laboratory.
7. analyze and interpret data from various instruments used in separating and identifying organic compounds: IR, NMR, and UV-vis spectrophotometers and mass spectrograph.
Lecture and Discussion – Attendance and Attention: Important and required. Feel free to bring your books and modeling kit to class. Better yet, use them. Prepare for lecture by prior scanning of new material. Come prepared for discussion, ready to ask questions on assigned homework or yet unassimilated lecture material.

Phones and Pagers: Please be courteous and respectful of others. Silent mode during lecture and discussion. **Not allowed in sight or within hearing during exams, subject to confiscation.** NO phone conversations in lecture hall or in discussion class – before class, during class, after class – AT ANY TIME!

Academic Honesty: Essential, expected, and enforced. Dishonesty dictates consequences which may include: (1) notification of Chemistry Department Chair, student’s Department Chair, and CAS Dean, (2) documentation in the student’s official university record, and (3) dismissal from the university. Immediate consequences will include a **ZERO** on any item in question (quiz or exam). Please refer to the LUC Undergraduate Handbook on policies or the CAS website: http://www.luc.edu/cas/pdfs/CAS_Academic_Integrity_Statement_December_07.pdf.

Study Strategies and Suggestions: One may approach the study of Organic Chemistry in a manner similar to tackling a new foreign language. Its study will provide a basis to understanding future material – building constantly, incessantly, and relentlessly on the structural and mechanistic information presented previously. Over two semesters, the course will cover functional groups, aliphatic and aromatic compounds, bonding, nomenclature, stereochemistry, conformational analysis, reaction mechanisms, multi-step syntheses, and spectroscopy. Because the course is cumulative and builds heavily on prior material, the best plan is to study Organic Chemistry regularly, every day, similar to practicing the piano. Collaboration on homework problems is encouraged, especially in a timely fashion. Experience dictates that positive outcomes (for exam and course grades) are directly proportional to working and understanding the assigned problems on a regular basis, i.e., applying the concepts learned to non-generic compounds.

Typically, Organic Chemistry is not efficiently self-taught. **Overnight cramming will probably not produce success.** The student should quickly read the chapter/segment to be covered BEFORE lecture to improve lecture comprehension. After lecture, careful detailed re-reading of the chapter/segment and focused working of the assigned problems are appropriate, necessary, and expected. In addition to student’s participation in lecture, discussion, reading, and homework, joining and contributing to a study group is encouraged.

If anticipating a passing grade of C, the minimal time per week in the summer devoted to Organic Chemistry is estimated at 9 hr for lecture/discussion, 6-12 hr for reading, and 6-12 hr for homework.

Suggested Homework Assignment (for Wade’s 7th edition):

```
Chap 2: 3-5, 7-11, 15-23, 35-36, 39-42, 44
Chap 3: 1-5, 9-10, 14-17, 20-21, 24-25, 29-30, 32-35, 37, 39, 44, 46
Chap 4: 1-2, 4-13, 18-22, 26, 28-31, 34-39, 42, 45-46, 50
Chap 5: 1-7, 15-22, 25-31
Chap 6: 1-7, 9-12, 14-16, 19-20, 22-24, 30-38, 40-45, 53, 56
Chap 7: 1-2, 4-8, 11, 13, 15, 19, 21, 23-25, 30-36, 38, 40-46
Chap 8: 1-2, 4-15, 17-19, 21-22, 27-29, 32, 34-37, 46-47, 49, 63-64
Chap 9: 1-2, 5-8, 12, 18-19, 23-29, 33-34, 36-37
Chap 10: 1-4, 7-10, 13-20, 23-26, 30-33, 37-39, 49, 51
Chap 11: 1-2, 5-6, 9-13, 21-22, 26, 31, 34, 39-45
Chap 12: 2-7, 11-12, 14-17, 23, 25
Chap 13: 2-11, 14-15, 22-25, 32-36, 38-44
Chap 14: TBD by student
```

Homework Package: ** *** due Wednesday, June 20, 2012 by 9 am ***

Hand in at least 10 completed problems (or parts of multiple problems) per chapter, **Chapters 1–10.** (Underlined problems are particularly insightful or anticipatory.) If not using a notebook, include your name and the date worked on each page. Mark the chapter and problem number for full credit. Staple package in chapter order ****AND**** **flag chapters in homework notebook** (which will be returned to the student), as applicable.
(for Wade 6th edition):

Chap 2: 5, 7-11, 15-23, 35-36, 39-42, 44
Chap 3: 1-5, 9-10, 14-15, 20-21, 29-35, 37, 39, 44, 46
Chap 4: 1-2, 4-13, 18-22, 26, 28-31, 34-39, 42, 45-46, 50
Chap 5: 1-3, 5-8, 16-22, 25-30
Chap 6: 1-7, 11-12, 14-16, 19-20, 22-24, 31-37, 44-45, 53, 56
Chap 7: 1-2, 4-5, 7-8, 13, 15, 19, 21, 23, 25, 34-35, 38, 40, 42-45
Chap 8: 1-2, 4-6, 8-15, 17-19, 27-28, 32, 34-37, 47, 49, 63-64
Chap 9: 1, 2, 5-8, 12, 18-19, 23-24, 33-34
Chap 10: 3, 7, 8-10, 13-15, 17-20, 24-26, 37-39, 49
Chap 11: 2, 5-6, 9-11, 13, 22, 31, 34, 41-45
Chap 12: 2-12, 14-19, 23, 25
Chap 13: 2-36, 38-45
Chap 14: TBD by student
Lecture Outline (tentative, subject to change, but unlikely due to time constraints)

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Date</th>
<th>Chapter(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May 21</td>
<td>1</td>
<td>Intro: Lewis structures, bonding, resonance, acid-base, nomenclature</td>
</tr>
<tr>
<td>2</td>
<td>May 23</td>
<td>2</td>
<td>Structure and properties</td>
</tr>
<tr>
<td>3</td>
<td>May 25</td>
<td>3</td>
<td>Alkanes, cycloalkanes, bicyclics</td>
</tr>
<tr>
<td></td>
<td>May 28</td>
<td></td>
<td>*** EVENT ***</td>
</tr>
<tr>
<td>4</td>
<td>May 30</td>
<td>4</td>
<td>Chemical rxns - free radical halogenation, kinetics, intermediates</td>
</tr>
<tr>
<td>5</td>
<td>June 1</td>
<td>5</td>
<td>Stereochemistry – chirality, isomers</td>
</tr>
<tr>
<td>6</td>
<td>June 4</td>
<td>6</td>
<td>Alkyl halides, nucleophilic substitution and elimination</td>
</tr>
<tr>
<td>7</td>
<td>June 6</td>
<td>6 / 7</td>
<td>Alkyl halides (continued) / Alkenes</td>
</tr>
<tr>
<td>8</td>
<td>June 8</td>
<td>7</td>
<td>Alkenes (continued)</td>
</tr>
<tr>
<td>9</td>
<td>June 11</td>
<td>8</td>
<td>Alkenes – rxns</td>
</tr>
<tr>
<td>10</td>
<td>June 13</td>
<td>9</td>
<td>Alkynes</td>
</tr>
<tr>
<td>11</td>
<td>June 15</td>
<td>10</td>
<td>Alcohols</td>
</tr>
<tr>
<td>12</td>
<td>June 18</td>
<td>10 / 11</td>
<td>Alcohols (continued) / Alcohols - rxns</td>
</tr>
<tr>
<td>13</td>
<td>June 20</td>
<td>11</td>
<td>Alcohols – rxns (continued)</td>
</tr>
<tr>
<td>14</td>
<td>June 22</td>
<td>14</td>
<td>Ethers, epoxides, sulfides</td>
</tr>
<tr>
<td>15</td>
<td>June 25</td>
<td>12</td>
<td>Spectroscopy – IR and MS</td>
</tr>
<tr>
<td>16</td>
<td>June 27</td>
<td>13</td>
<td>Spectroscopy – NMR</td>
</tr>
<tr>
<td>17</td>
<td>June 29</td>
<td>12 / 13</td>
<td>Spectroscopy (continued)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HW package due</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*** EVENT ***</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>last day to withdraw with W, not WF</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>*** EVENT ***</td>
</tr>
</tbody>
</table>

Daily Schedule (tentative, approximate, flexible, may adjust order):

<table>
<thead>
<tr>
<th>Regular Day</th>
<th>Quiz Day</th>
<th>Exam Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:00 am Q/A, admin</td>
<td>08:30 – 09:00 am Q/A</td>
<td>08:30 – 09:00 Q/A</td>
</tr>
<tr>
<td>09:00 – 10:00 lecture 1</td>
<td>09:00 – 10:00 lecture 1</td>
<td>09:00 – 10:20 lecture</td>
</tr>
<tr>
<td>10:00 – 10:10 break as time/topic permit</td>
<td>10:00 – 10:10 break</td>
<td>10:20 – 10:30 break</td>
</tr>
<tr>
<td>10:10 – 10:30 discussion</td>
<td>10:10 – 11:00 lecture 2</td>
<td>10:30 – 11:20 EXAM</td>
</tr>
<tr>
<td>10:30 – 11:20 lecture 2</td>
<td>11:00 – 11:20 quiz</td>
<td></td>
</tr>
</tbody>
</table>