Loyola University Chicago

Organic Chemistry B CHM 224 Sec. 005, 006 Summer Session B July 01 – Aug. 09 2013
Lecture: M, W, F 02:00 PM - 04:50 PM MUNDELEIN CENTER 204
Instructor: DONALD MAY Contact: dmay4@luc.edu
Office: Flanner Hall 403: Hours: M, F; 01:00 PM – 01:45 PM
Required Materials:
2) molecular model kit

Method of instruction: Lecture and discussion
Lectures may be supplemented with classroom discussion, use of molecular models, use of multimedia, and/or use
of computer based materials as well as individual and/or group problem solving. Suggested textbook homework
problems will be given but the student will not be required to turn them in.

Grading: Semester grades will be determined by the following criteria: discussion handouts, two unit exams and
one cumulative final exam. See schedule. There are no early and no make-up exams. The student must have a valid
and verifiable reason for missing the final exam, such as a serious illness requiring hospitalization, and so forth.
Oversleeping, not knowing the date and time of the final exam or not being prepared and so forth, are not valid
reasons. If a verifiable and valid reason cannot be provided a zero score for the final exam will be recorded. Each
discussion handout will be worth one (1) point. Students must attend the lecture to receive the handout and attend
lecture, to turn in the handout, on the due date. No exceptions. Students are allowed and encouraged to work
together on discussion handouts.

Final course grade: Grading will be based on a curve: The mean, standard deviation and quartiles will be utilized
for assigning grades to scores. Grades correlated to scores will be determined from the exam score distribution.
Grades assigned will be: A, A-, B+, B-, C+, C, C-, D+, D, F.

Student Conduct: Only students enrolled for the class may attend. At all times students are expected to conduct
themselves in a professional manner, which includes but is not limited to: treating everyone in class with respect,
avoidance of extraneous comments and small group discussions during lecture. Additionally radios, headphones,
cell-phones or similar electronic devices must be in silent mode and are not permitted to be in operation during
lectures, discussions and exams. Students are expected to take care of personal matters before lectures, discussions
and exams begin. The eating and drinking of food, water, soda, use of tobacco products, chewing gum, are not
allowed, unless medically indicated by a physician. Not all possible contingencies for student conduct can be listed,
subsequently other modes of student conduct not listed, will be addressed immediately. Disruptive students will be
required to leave. Students are responsible for taking care of all personal matters before an exam begins. During
exams, please keep sounds/noises to a minimum. If a cell phone rings (beeps, buzz, etc.) during any exam, the exam
will be collected (See Academic Integrity) and the student will not be allowed to continue. Non-religious caps or
hats are not allowed to be worn during exams. Additional guidelines for exams will be posted. Exam questions,
however, will come predominantly from lecture notes and from concepts related to suggested homework problems.
Students must bring their Loyola I.D to each exam. Students are not allowed to leave during exams. If you leave,
you must turn in your exam and you will be considered finished with the exam. Students cannot begin an exam and
decide not to complete it. Students must turn in all exam materials/pages when finished. Loose pages should be
initialized by the student before turning in the exam. Exams turned in will not be returned until all exams are
graded.

Academic Integrity: Consult the Undergraduate Studies Handbook for additional information. All students in this
course are expected to have read and to abide by the demanding standard of personal honesty, drafted by the College of
Arts & Sciences, which can be viewed at:
http://www.luc.edu/cas/pdfs/CAS_Academic_Integrity_Statement_December_07.pdf
Anything you submit that is incorporated as part of your grade in this course must represent your own work. All exams
are closed book and closed note: No external materials nor personnel are allowed. During exams, violations include but
are not limited to: cell phone ringing, answering/using a cell phone, using unauthorized notes or books, looking at
another student’s exam, talking to other students, opening and/or utilizing anything in your book bag, and so forth. Any
student found to be in violation or cheating will be given a zero for the assignment/exam and the incident will be
reported to the Chemistry Department Chair and the Office of the CAS Dean. Depending on the seriousness of the
incident, additional sanctions may be imposed.
Lecture Outline (tentative / subject to change)
Schedule: Organic Chemistry Lecture, Chemistry 224 B, Summer B 2013
All classes: M, W, F 02:00 PM - 04:50 PM MUNDELEIN 204

<table>
<thead>
<tr>
<th>JULY</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
</tr>
<tr>
<td>01 CHP 12,13</td>
<td>02</td>
<td>03 CHP 13</td>
<td>04</td>
<td>05 CHP 13,14</td>
</tr>
<tr>
<td>08 CHP 14, 15</td>
<td>09</td>
<td>10 CHP 15, 16</td>
<td>11</td>
<td>12 CHP 16, 17</td>
</tr>
<tr>
<td>15 EXAM I CHP 17</td>
<td>16</td>
<td>17 CHP 17, 18</td>
<td>18</td>
<td>19 CHP 18</td>
</tr>
<tr>
<td>22 CHP 18,19</td>
<td>23</td>
<td>24 CHP 19, 20</td>
<td>25</td>
<td>26 CHP 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JULY/AUG.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
</tr>
<tr>
<td>29 EXAM II CHP 21</td>
<td>30</td>
<td>31 CHP 21</td>
<td>01</td>
<td>02 CHP 22 Last drop day with no “WF”</td>
</tr>
<tr>
<td>05 CHP 22, 23</td>
<td>06</td>
<td>07 CHP 23, 24</td>
<td>08</td>
<td>09 FINAL EXAM</td>
</tr>
</tbody>
</table>

In general, the last part of lectures will be utilized for discussion, which will start around 04:20 PM. This will allow students to clarify questions from homework, previous lecture material and so forth. Discussion handouts, to be completed before leaving, will also be given. Lectures will incorporate 50 minutes of time followed with a 10 minute break. Exams will generally cover all material up to and including material from the previous Friday. Lectures subsequent to exams will then continue with new material, 15 minutes after the completion of each unit exam. The lecture on Aug. 07, 2013 will be a full lecture. The final exam will be cumulative/comprehensive and will be 2 hours in duration.

Course Practices Required:
College-level writing skills on exams; Communication skills for discussion and articulation of questions; Completion of reading assignments, working through suggested homework and hand-outs.

Learning Objectives:
Students who successfully complete this course will be able to do the following at an acceptable level:
Name and draw simple and more complex organic structures; Differentiate between isomer types (structural and stereo) and conformers; predict and name different stereoisomers; Describe and differentiate between various mechanisms, such as addition versus substitution; differentiate between types of electrophilic aromatic substitution and nucleophilic aromatic substitution; Relate reaction mechanisms to intermediates, stereochemistry, and kinetics; predict reaction mechanism from experimentally related data and vice versa; Work with multistep reaction pathways; develop synthetic pathways to simple and more complex organic compounds; Use NMR, IR, UV, and mass spectrometry data to identify structures; predict the spectroscopic data from the structure; Predict both physical and chemical properties of ethers, aromatics, phenols, aldehydes, ketones, carboxylic acids, derivatives of carboxylic acid and amines; Predict the structure and stereochemistry of: conjugated dienes reacting with dienophiles; various carbonyl and other condensation reactions; Identify and describe bio-molecules including carbohydrates, amino acids/proteins, lipids, and heterocyclic/nucleotide/nucleic acids