CHEM 101: General Chemistry – Semester 1
Summer 2015 - Session A
Loyola University Chicago

Co-Instructors: Patrick L. Daubenmire, Ph.D. Linda C. Brazdil, Ph.D.
Office: Flanner Hall 415 Cudahy Science 420
Phone (office): 773.508.8248 (off.) 773.508.3103 (off.)
 630.336.4180 (cell) 773.508.3103 (off.)
Email: pdauben@luc.edu lbrazdil@luc.edu
Office hours: We will respond to emails and phone messages as quickly as possible
and at a minimum within 24 hours except on weekends. Only emails from your Loyola University account will be accepted, and we will only
send emails to your Loyola University account. Communications received after 3:00 pm on Friday or over a weekend will be answered on
Monday morning at the latest.
If you require assistance either via the computer or in person, please
email us to set up an appointment. We can communicate via Skype or
our Adobe Connect Classroom or can set up a time to meet on campus.

Class Meeting Times: There will be no mandatory synchronous all-class meetings times for
this course, but there will be requirements for synchronous group
session during the semester. We will also offer an optional online
synchronous session on each Thursday at 11:30-12:30 pm. CDT. These
sessions are designed to review and reinforce essential concepts and
skills of the week. They will be recorded and made available on Sakai
in case you are not able or choose not to attend.

Course Description
This course is an online general chemistry course for science majors and students in pre-
professional health studies. It includes the following topics: matter and measurement; atoms,
molecules, and ions; mole mass relationships in chemistry, reactions in aqueous solution;
thermochemistry; electronic structure and the periodic table; periodic trends; chemical bonding;
molecular geometry and bonding theory; gas laws; and intermolecular forces. Historical and
current developments in chemistry as well as real-world problems that chemists address will be
incorporated into the course.

The emphasis of this course is on understanding, application, and prediction rather than
memorization. This means that students must foster their problem solving skills and their ability
to make claims based on evidence. It is not enough to know what happens in chemistry, students
must also be able to explain why it happens.
Prerequisites:
Satisfactory performance on the Loyola math proficiency test or Math 117 (or equivalent) with a grade of C- or better. A year of high school chemistry is recommended.

Required Resources
(3) Sakai Connection, sakai.luc.edu – the course is CHEM 101 001 SU16. Group projects, individual assignments, and other useful information will be posted under the Resources section of Sakai. Voice threads with important content will be posted on Sakai as well. You will also submit your group work and projects using Sakai and will be able to have group discussions either synchronously or asynchronously using various formats in Sakai. The instructor will monitor your progress in order to ask questions or provide suggestions to make sure you are learning important concepts in chemistry.
(4) Access to the Adobe Connect Virtual Classroom Space. Our weekly synchronous session will be held in a virtual classroom and can be accessed through our Sakai page via the Adobe Connect tab.
(5) A computer with a quality, high speed internet connection (preferably wired to ethernet) for synchronous sessions and for access to online resources.
(6) A headset with microphone for use during synchronous sessions (listening through computer speakers can cause a large amount of background noise when you turn on your microphone, so a headset is essential).

Course Objectives
Within various measures for student growth at Loyola this course aims to help the student in the following areas:

- Essential Components of the Course (IDEA Objectives). This course aims to help students:
 - Gain factual knowledge of chemistry (terminology, classification, methods, trends).
 - Learn fundamental chemistry principles, generalizations, or theories.
 - Learn to apply course material in order to improve thinking, problem solving and decision making.
 - Gain a broader understanding and appreciation of the intellectual/cultural activity of science, and
 - Acquire an interest in learning more by asking questions and seeking answers.
• **Connection to the “Hungers” of Loyola University’s Transformative Education**

Within the spirit of Jesuit education traditions and practices, this course seeks to assist each student in fostering hungers associated with the University’s model of transformative education.¹ The study of introductory chemistry can also assist in development of the specific hungers below:

- A Hunger for Integrated Knowledge – by building an understanding of a variety of chemical concepts and applying them to problems in many contexts.
- A Hunger for a Moral Compass – by examining the variables, benefits, and detriments that exist at the interface of applied science, technology, environment, and society.
- A Hunger for a Global Paradigm – by examining the variables, benefits, and detriments that exist at the interface of applied science, technology, environment, and society.

Instructional Format

This course will run mostly asynchronously, having both individual and group tasks and assignments. While there will be short recorded lectures available for viewing, the course will focus more on eliciting students’ current ideas and thoughts about sets of data or presented models that are posted online or part of course activities. Then, through guided questions about the presented information, students, via small group interactions will discuss ideas and come to consensus about answers to questions. Ideas are further developed in questions that force application of the agreed upon concepts. The instructor(s) guide you on this journey, pointing out areas that are particularly relevant or that may need attention. This format is designed based on the idea that learning cannot be directly transmitted from one person to another. Knowledge must be built by the learner which results from interpretation and reflection on experiences in particular contexts, such as the chemistry classroom, when working with others and guided by a mentor.

In this context we will offer an optional online synchronous sessions for students who want to discuss ideas and ask questions in real time. If these sessions are not possible for you to attend because of other obligations, these sessions will be recorded and made available on Sakai. You may also and are encouraged to submit questions or other discussion points prior to these sessions so that we can address your needs in a timely manner.

In addition you will be assigned to a small group to help you discuss ideas. You may choose to do this in some type of synchronous session with those group members (via face-to-face meetings, if that is possible) or via Skype or FaceTime or other virtual venues), or asynchronously (via email, text, or Facebook, etc.).

Academic Honesty

Academic honesty is an expression of interpersonal justice, responsibility and care, applicable to Loyola University faculty, students, and staff, which demands that the pursuit of knowledge in the university community be carried out with sincerity and integrity. The School of Education’s Policy

¹http://www.luc.edu/transformativeded/
on Academic Integrity can be found at:
http://www.luc.edu/education/academics_policies_integrity.shtml.

The definitions of cheating, plagiarism, fabrication, and falsification are given at this site will be used in determining whether a student has violated academic integrity. Additionally, a clear and thorough discussion of plagiarism, including examples, can be found on the English Department’s website at http://www.luc.edu/english/writing.shtml#source

All students in this course are expected to have read and to abide by the demanding standard of personal honesty, drafted by the College of Arts & Sciences, that can be viewed at:
http://www.luc.edu/cas/pdfs/CAS_Academic_Integrity_Statement_December_07.pdf

Anything you submit that is incorporated as part of your grade in this course (e.g., quiz, examination, homework, paper, presentation) must represent your own work. Any student found to have cheated on, plagiarized, fabricated, or falsified any portion of a test or assignment will receive a zero on that test or assignment and this grade cannot be dropped. The student has the right to appeal the instructor’s decision. If the student does so, the Academic Grievance Procedure described at http://www.luc.edu/academics/catalog/undergrad/reg_academicgrievance.shtml will be followed. If a student is found to have cheated on, plagiarized, fabricated, or falsified any portion of a test or assignment for a second time in this class, they will receive an F for the class. In all cases of academic dishonesty, the instructor will report the incident to the Office of the CAS Dean. Depending on the seriousness of the incident, additional sanctions may be imposed.

Accessibility
Students who have disabilities which they believe entitle them to accommodations under the Americans with Disabilities Act should register with the Services for Students with Disabilities (SSWD) office. To request accommodations, students must schedule an appointment with an SSWD coordinator. Students should contact SSWD at least four weeks before their first semester or term at Loyola. Returning students should schedule an appointment within the first two weeks of the semester or term. The University policy on accommodations and participation in courses is available at: http://www.luc.edu/sswd/

Harassment (Bias Reporting)
It is unacceptable and a violation of university policy to harass, discriminate against or abuse any person because of his or her race, color, national origin, gender, sexual orientation, disability, religion, age or any other characteristic protected by applicable law. Such behavior threatens to destroy the environment of tolerance and mutual respect that must prevail for this university to fulfill its educational and health care mission. For this reason, every incident of harassment, discrimination or abuse undermines the aspirations and attacks the ideals of our community. The university qualifies these incidents as incidents of bias.

In order to uphold our mission of being Chicago's Jesuit Catholic University-- a diverse community seeking God in all things and working to expand knowledge in the service of humanity through learning, justice and faith, any incident(s) of bias must be reported and appropriately addressed. Therefore, the Bias Response (BR) Team was created to assist members of the Loyola University Chicago community in bringing incidents of bias to the attention of the university. If you believe you are subject to such bias, you should notify the Bias Response Team at this link:
http://webapps.luc.edu/biasreporting/
Course Evaluation
Grades will be assigned in the course according to the following sources:

Table 1. Grade Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Percent Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online participation and group responses</td>
<td>10%</td>
</tr>
<tr>
<td>Online homework sets & activities</td>
<td>15%</td>
</tr>
<tr>
<td>Tests</td>
<td>40%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
</tbody>
</table>

Participation, group responses, and reports will be an important part of the class. This work will be a combination of individual and group work. Participation involves completing assignments and using pertinent data to take part in group work, add to discussions, and make reasoned conclusions or decisions. This will include being able to ask questions of others and to evaluate arguments and conclusions made by others. This type of dialog will take place via shared answers on discussion boards or in other online assignment sharing.

Online Homework Sets & Activities using MasteringChemistry will be assigned each week. Submitted responses must be the result of your individual effort and synthesis and must be submitted by 10 pm on each Wednesday. While you can work with classmates on homework, you need to ensure that you understand how to do the assigned problems so that you are able to do them without help from others. Late assignments may not be accepted, and verification of reasons may be requested.

Online tests will be administered at two different points during the course. These will be administered using MasteringChemistry. Tests will be available during specific blocks of time and will be timed so that you have a specific amount of time once you have opened the test to complete it.

The Final Exam will be online and is designed to assess students comprehensive knowledge of concepts developed during the work of the entire semester. It will be administered using MasteringChemistry. The final exam will be available during a specific block of time and will be timed so that you have a specific amount of time once you have opened the exam to complete it.
Grades will be assigned according to the grading scale presented in Table 2.

<table>
<thead>
<tr>
<th>Percentage of Points Earned</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>92% or greater</td>
<td>A</td>
</tr>
<tr>
<td><92% - 90%</td>
<td>A-</td>
</tr>
<tr>
<td><90% - 88%</td>
<td>B+</td>
</tr>
<tr>
<td><88% - 82%</td>
<td>B</td>
</tr>
<tr>
<td><82% - 80%</td>
<td>B-</td>
</tr>
<tr>
<td><80% - 78%</td>
<td>C+</td>
</tr>
<tr>
<td><78% - 72%</td>
<td>C</td>
</tr>
<tr>
<td><72% - 70%</td>
<td>C-</td>
</tr>
<tr>
<td><70% - 68%</td>
<td>D+</td>
</tr>
<tr>
<td><68% - 60%</td>
<td>D</td>
</tr>
<tr>
<td><60%</td>
<td>F</td>
</tr>
</tbody>
</table>

Practices for Success
Supporting claims with evidence, making applications, solving and analyzing problems, and using scientific principles to explain phenomena are critical skills in the field of science. The development of these skills is not without some frustration, but it carries the reward of deepening one’s ability to think critically and solve problems in any field. To do this, one may have to assess, evaluate, and possibly revise approaches to learning. The use of targeted, guiding questions, regularly scheduled work, and strategic study plans can greatly assist the learning of science. With such a focus, hopefully any frustration will quickly turn to appreciation and fascination for the relevance and connectedness of science in your life and the world around you. Solving and analyzing problems is the most important feature of this work. If, at any time, you need assistance framing such plans for your work in science, please do not hesitate to ask the instructor.

Norms of Course Proceedings
The online environment that is our classroom is to be a safe place to question and explore ideas. Student and teacher voices are important to this work. Collegial disagreement can be a healthy part of this process, but must always include respect for all members of the class. Course activities will be designed to help students reach the goal of learning chemistry content and developing thinking skills. This will more often be driven by the use of data and reasoning to discover concepts and solutions rather than the identification and exchange of facts and algorithms.

Email messages and other electronic communication among students in the course should be respectful, appropriate, and professional. The instructor will respond to emails and phone messages as quickly as possible and at a minimum within 24 hours except on weekends. Only emails from your Loyola University account will be accepted, and the instructor will only send emails to your Loyola University account. Communications received after 3:00 pm CDT on Friday or over a weekend will be answered on Monday morning at the latest.
Completed course assignments must be submitted by 10 pm CDT on the due date. Please note that the due date may or may not be a date that the class meets synchronously. Late assignments will not be accepted without proper verification of reasons.

Course Schedule and Assignments

Table 3. Proposed Semester Topics & Schedule

<table>
<thead>
<tr>
<th>Dates</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-course</td>
<td>This will be a synchronous orientation session starting at 11:30 am to help orient students to the online classroom and tools we will be using in this course. This session will be recorded and posted on Sakai.</td>
</tr>
<tr>
<td>Orientation:</td>
<td></td>
</tr>
<tr>
<td>May 19</td>
<td></td>
</tr>
<tr>
<td>Week 1: May 23-27</td>
<td>Matter and Measurement (BLBMWS, Chapter 1 - review)</td>
</tr>
<tr>
<td></td>
<td>Atoms (Moog, CA 1, 2; BLBMWS, Chapter 2, Sections 1-4)</td>
</tr>
<tr>
<td></td>
<td>Nuclear Chemistry (Supplemental CA 63, 64; BLBMWS, Chapter 21 (except 21.4))</td>
</tr>
<tr>
<td>Week 2: May 28-June 3</td>
<td>The Shell Model of Atoms (Moog, CA 4-6; BLBMWS, Chapter 2, Section 5; Chapter 7, Sections 1-4, 6-8)</td>
</tr>
<tr>
<td></td>
<td>Electron Behavior & Configurations (Moog, CA 9-11; BLBMWS, Chapter 6, Sections 1-4 (for section 4, you will not need to do any mathematical calculations), 7 (only the “Orbitals and Their Energies” section), 8 (not “The Lanthanides and Actinides” section), 9; Chapter 7, Section 4 (electron configurations of ions))</td>
</tr>
<tr>
<td></td>
<td>Test 1: Friday, June 3 (This is a timed exam on masteringchemistry.com and must be completed by 10:00 pm CDT)</td>
</tr>
<tr>
<td>Week 3: June 4-10</td>
<td>Chemical Bonding & Lewis Structures (Moog, CA 13-15; BLBMWS, Chapter 2, Sections 6, 8, 9 (only alkanes & alcohols); Chapter 8, Sections 1, 3, 5, 6, 8)</td>
</tr>
<tr>
<td></td>
<td>Resonance, Formal Charge & Extended Octets in Lewis Structures (Moog, CA 16-17; BLBMWS, Chapter 8, Sections 6, 7)</td>
</tr>
<tr>
<td></td>
<td>Molecular Shape & Hybridization (Moog, CA 18-19; BLBMWS, Chapter 9, Sections 1-6)</td>
</tr>
<tr>
<td>Week 4: June 11-17</td>
<td>Different Types of Bonds (Moog, CA 22, 24, 25; BLBMWS, Chapter 2, Section 7; Chapter 8, Sections 2, 4; Chapter 12, Section 4 (“Electron-Sea Model” only)); The Mole & Gases (Moog, CA 27, 28, 32, 33; BLBMWS Chapter 3, Section 4; Chapter 4, Sections 1, 5; Chapter 10, Sections 1-7, 9)</td>
</tr>
<tr>
<td></td>
<td>Test 2: Friday, June 17 (This is a timed exam on masteringchemistry.com and must be completed by 10:00 pm CDT)</td>
</tr>
<tr>
<td>Week 5: June 18-24</td>
<td>Chemical Equations and Stoichiometry (Moog, CA 29 & 30; BLBMWS, Chapter 3, Sections 1-3, 6, 7)</td>
</tr>
<tr>
<td></td>
<td>Empirical Formulas, Reactions in Aqueous Solution (Moog, CA 31 & 32; BLBMWS, Chapter 3, Section 5; Chapter 4, Sections 4 & 6)</td>
</tr>
<tr>
<td>Dates</td>
<td>Topics</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Week 6: June 25-July 1 | *Thermochemistry* (Moog, CA 34, 35; BLBMWS, Chapter 5, Sections 1-4, 6 & 7)
Final Exam – (Comprehensive over the entire semester), July 1 *(This is a timed exam on masteringchemistry.com and must be completed by 10:00 pm CDT)* |

Information from other chapters may be introduced by the instructor as appropriate to specific topics.