
Unruh and Hawking Radiation
In Quantum Field Theory, when an observer in flat space and an inertial frame measures their vacuum 
energy by acting on the vacuum state  , with the number operator ni, they measure 0. However, if this 
observer were to be in a curved space – or by the equivalence principle, accelerating in flat space – this 
would no longer be the case as the quantum field being measured is defined differently between flat and 
curved space. Using the Bogoliubov Transformation, we can relate the fields in flat and curved space and 
subsequently determine how the number operator in curved space acts on the flat space. We find that

which means an observer in curved space measures a non-zero vacuum energy in flat space. We call this 
the Unruh Effect, and the thermal radiation it creates Unruh Radiation – or in the special case of black 
holes, Hawking Radiation. The Unruh Temperature and Hawking Temperature measure the temperature of 
their radiation and are

respectively.

Uniform Acceleration in Minkowski Space
In Minkowski space, which is flat spacetime, an object that experiences constant acceleration will take 
a hyperbolic path, of the form

through spacetime as shown in the diagram below. In a non-relativistic analysis, this trajectory would 
be parabolic as simply integrating a twice produces 

However, because relativity limits the maximum velocity to the speed of light, the velocity of a 
uniformly accelerating object will asymptotically approach C, producing a hyperbolic trajectory like the 
ones plotted below.

Rindler Coordinates
Due to the hyperbolic path undertaken by the uniformly accelerated observer in Minkowski space, we now 
introduce the Rindler metric to simplify our near horizon study. This coordinate system assumes a constantly 
accelerated frame and the Rindler interval near the horizon is given by

and r has been replaced by ρ, or the proper distance from the horizon. Additionally, the metric relies on the 
use of a dimensionless time ω. We can easily arrive back to our familiar Minkowski metric if we limit 
ourselves to r near 2MG, and a small angular region:

The Near Horizon Geometry of a Black Hole

Introduction
Black holes are regions of space where mass is compacted so densely, and has gravity so strong, that 
not even light can escape. Originally, when they were discovered as a consequence of Einstein’s 
General Relativity, they were deemed a mathematical curiosity with no physical significance. This is no 
longer the consensus, as we have since observed their effects on the motion of celestial bodies, the 
gravitational waves they produce, and the accretion disks of high-temperature matter that often 
surround them. Since discovering that black holes exist in our universe, there have been other 
apparent problems with their description that have been overcome through careful consideration. For 
our research this past year, we have used the geometric properties of black holes and quantum 
mechanics to explore interesting aspects about the nature of black holes.
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The Schwarzschild Metric
The metric is a matrix that we use to define the spacetime interval (the analogue to distance) in 
relativity. In flat spacetime, we use the Minkowski Metric which produces the interval:

For curved spacetime, Karl Schwarzschild discovered a new metric, known as the Schwarzschild Metric, 
that obeys Einstein’s field equations and manifests itself in a geometry that is both spherically 
symmetric and static. This new metric produces an interval

where r and t are coordinate radius and time respectively. These are the quantities that an observer 
far away from the black hole would measure. Due to the spherically symmetric curvature of 
spacetime, the measured radial distance becomes stretched compared to the coordinate distance. 
Another important feature of this new metric is that it diverges as the radius approaches 2MG. We call 
this distance the Schwarzschild Radius (Rs), or for black holes, the Event Horizon. Normally, when we 
see divergence in our math it means that something has gone terribly wrong. However, using some 
clever coordinate transformations we can get around this problem.

Outlook and Conclusion
The Black Hole Information Paradox, originally proposed by Hawking in a 1976 paper, arises from a 
fundamental disagreement between the quantum mechanical and relativistic predictions of how black 
holes thermalize (scramble and re-emit as radiation) information. In trying to answer this question the 
community stands to learn a lot about the true nature of gravity, and how our two most complete 
descriptions of the universe fit and do not fit together. Our work this past year has covered invaluable 
prerequisite knowledge on general relativity and quantum mechanics in order to equip us with the tools to 
tackle this problem.

Overall, this coordinate transformation informs 
us that the event horizon (Rs = 2MG) is 
locally nonsingular and the space around Rs is 
locally flat. Spacetime diagrams, like the one to 
the right, allow us to visually understand this 
metric. Here, the event horizon is the origin, and 
the four quadrants represent regions separated 
by it. Region I is located outside of the horizon 
and in addition to representing Rindler space, it is 
causally disconnected from regions III and IV. 
Importantly, region II is causally disconnected 
from all regions, showing that nothing can ever 
leave from inside the event horizon. Moreover, 
we observe that the light cones present in our 
Minkowski diagram for an accelerated observer 
are preserved and increasing values of ρ 
correspond to decreasing values of acceleration 
for our accelerated observer in flat spacetime.
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