Loyola University Chicago

University Core

Quantitative Knowledge and Inquiry

Area Goal: This Core Area of Inquiry will invite students to explore the major concepts and methods involved in the analysis of quantitative data.

Area Objectives: Through these courses, students will explore how one or more fields--mathematics, statistics, computing, and the social sciences--understand and analyze quantitative information. This involves reasoning by symbolic, numerical, or geometrical means, and determining various ways to solve problems while predicting possible consequences.

Area Learning Outcomes: After completing the course in this Area, students will be able to:

  • represent and interpret quantitative information symbolically, graphically, numerically, verbally, and in written form.
  • describe the strengths and limitations of various types of quantitative models.
  • describe the utility of quantitative methods for scientific inquiry or technological progress.
  • apply quantitative methods to solve problems or model situations arising in scientific, political, social, or personal contexts.

Courses (1 course required)

CJC 206: Statistics 
This course provides an introduction and overview of statistical analysis methods and techniques used in the study of delinquency, crime and the operation/management of the criminal justice system.

Outcome:  Students will be able to effectively perform and interpret statistical analyses and identify the appropriate use of these statistics in the analysis of crime and criminal justice system performance.
COMP/MUSC 122: Introduction to Digital Music
This course is an exploration of digital tools for the creation, analysis, and distribution of music. IT is designed for students from all fields with an interest in digital music, regardless of experience in digital technology or musical background.

Outcome: Students will gain hands-on experience using coding and production software for the creation, manipulation, and study of sound and music. The course will seek to place these tools and activities within the context of digital audio theory and the history of computer music composition, performance, and research.
COMP 125: Visual Information Processing
This course provides an introduction to computer programming using a language well-suited to beginning programmers and practical applications, for example Visual Basic .Net.

Outcome: Students will be able to represent and interpret quantitative information symbolically, graphically, numerically, verbally, and in written form.
COMP 150: Introduction to Computing
This course will introduce both majors and non-majors to the range of studies, experimentation, and practice embodied in computer science.

Outcome: Students will understand the field and foundations of computer science, and be able to demonstrate basic tools of the field.
ISSCM 241: Business Statistics 
This course examines the steps and procedures required to solve problems in science, social science, and business where data are useful-from definition of the managerial problem to the use of statistical analysis to address the problem.

Outcome: Students will be able to demonstrate understanding of statistical thinking and data analysis techniques for decision-making purposes.
MATH 108: Real World Modeling with Mathematics
This course covers material selected from the mathematics of the management sciences, statistics, the digital revolution, social choice, and consumer finance models.

Outcome: Students will be able to demonstrate understanding particular topics, including: networks, planning and scheduling, linear programming, generating and analyzing statistical data, probability, statistical inference, identification numbers, data encryption, voting procedures, weighted voting systems, fair division, apportionment, models for saving and for borrowing.
STAT 103: Fundamentals of Statistics
This course is an introduction to the fundamentals of descriptive and inferential statistics.

Outcome: Students will be able to demonstrate understanding of particular topics, including: design of experiments, observational studies, histograms, the average and standard deviation, normal approximations, chance error and bias, basic probability, chance processes, expected value and standard error, probability histograms, surveys, accuracy of percentages and averages, tests of significance, and correlation and regression.