Abstract

The neutrino is a weakly interacting, electrically neutral particle in the standard model of particle physics. These neutrinos are referred to as left-handed or active neutrinos and are classified into three flavors (electron, muon, and tau). Neutrino oscillation is the phenomenon that involves the oscillation of neutrinos between the three flavors. This phenomenon is also applied to the oscillation of left-handed neutrinos into right-handed (sterile) neutrinos. The sterile neutrino is a hypothetical particle that does not interact with the weak force and only interacts through the gravitational force. [1] This characteristic of the sterile neutrino makes it a very good dark matter candidate. Dark matter is a form of matter that does not interact with the electromagnetic force, which means that it does not interact with light. The objective of this project has been to calculate the abundance of sterile neutrinos in the early universe and use this abundance to constrain the parameter space of the model using data from X-ray observations. [2]

Diagonalization

To begin investigating the distribution of sterile neutrinos, it is important to begin by establishing the formalism that will be utilized. Starting with the Lagrangian $\mathcal{L} = \mathcal{L}_N + \mathcal{L}_{SM}$ where \mathcal{L}_{SM} is the Lagrangian of the Standard Model and \mathcal{L}_N is the Lagrangian of the right-handed neutrino and goes as:

$$\mathcal{L}_N = \bar{\nu}_R \mathcal{D}_R \nu_R - \frac{1}{2} \bar{\nu}_R^T M_N \nu_R - H.C.$$ (1)

Where H and L are the Higgs and Lepton doublets respectively, and ν_R is the right-handed neutrino. y_M is the Yukawa coupling [1]. To begin the diagonalization of M consider the terms contained in \mathcal{L}_N:

$$\frac{1}{2} \left(\bar{\nu}_R^T M_N \nu_R \right) = \begin{pmatrix} 0 & m_0 U_m \end{pmatrix} M_N \begin{pmatrix} 0 \\ m_0 \end{pmatrix}$$ (2)

The eigenvalues of M go as

$$\lambda = \frac{1}{2} \left(M_N \pm \sqrt{M_N^2 - 4m_0^2} \right)$$ (3)

and by Taylor expanding λ becomes

$$\lambda = \frac{1}{2} \left(M_N \pm \left(M_N + \frac{2m_0^2}{M_N} \right) \right)$$ (4)

Diagonalization Cont.

and the eigenvalues will go as $\lambda = M_N$ and $\lambda = - \frac{m_0^2}{M_N}$. From the eigenvalues the diagonal form of M goes as:

$$M_D = U M U^T$$ (5)

and U is the matrix used to diagonalize and is defined as:

$$U = \begin{pmatrix} 1 & \theta \\ -\theta & 1 \end{pmatrix}$$ (6)

where θ is defined as the mixing angle between neutrinos and goes as: m_2, M^{-1}_N [1]. The diagonalized result is:

$$\left(\begin{array}{ccc} -m_{\nu_{e}}^2 & m_{\nu_{e}}^2 & m_{\nu_{e}}^2 \\ 0 & m_{\nu_{e}}^2 & m_{\nu_{e}}^2 \\ 0 & 0 & m_{\nu_{e}}^2 \end{array} \right)$$ (7)

and written in a more convenient notation:

$$M = \begin{pmatrix} -M_N & 0 \\ 0 & M_N \end{pmatrix}$$ (8)

where $M_N = m_{\nu_{e}}^2 M_N m_{\nu_{e}}^2$. The matrix representation of M_N goes as:

$$\begin{pmatrix} M_0 \\ M_1 \\ M_2 \end{pmatrix}$$ (9)

$M_N^{(\text{diag})}$ takes the form of $\text{diag}(M_1, M_2, M_3)$ where $M_i \approx M_0 - \frac{3}{2} \gamma_N^1$ [1].

Abundance Density

Using the resulting masses and the mixing angle from the diagonalization of M to calculate the distribution of sterile neutrinos in the early universe [1]. Starting with the Boltzmann Equation:

$$\frac{d\rho_{\nu_{R}}}{dt} + 3H
\rho_{\nu_{R}} = C_{\nu_{R}}$$ (10)

where the collision term $C_{\nu_{R}}$ goes as:

$$C_{\nu_{R}} = \mathcal{P}(\nu_{R_2} \rightarrow \nu_{R_1}) (\gamma_{\nu_{R_2}}^{\text{coll}} + \gamma_{\nu_{R_2}}^{\text{ID}})$$ (11)

Where

$$\gamma_{\nu_{R_2}}^{\text{coll}} = \frac{T}{64\pi^2} \int_{s_{\text{min}}}^{\infty} ds \sqrt{s} \frac{\delta}{T}$$ (12)

and

$$\gamma_{\nu_{R_2}}^{\text{ID}} = \frac{M_T^2 \Gamma(LH)k_1 (M_2)}{\pi^2}$$ (13)

The two collision terms can be summed and simplified to $\gamma_{\nu_{R_2}}$. Then additionally defining the probability $\mathcal{P}(\nu_{R_2} \rightarrow \nu_{R_1})$ as $\frac{1}{2} \sin^2(2\theta_N)$ where θ_N is defined as the mixing angle between ν_{R_2} and ν_{R_1} [1].

Conclusion

θ_N is equivalent to $\frac{\theta_B}{2}$. δ is the reduced cross section and k_1 is the modified Bessel function of the first kind. $\Gamma(LH \rightarrow \nu_{R_1})$ is known as the decay width and goes as: $(y_{\nu_{R_1}}^2 \delta^2 \frac{M_2}{2\delta})$. Solving the Boltzmann equation will result in the yield which goes as:

$$Y_{\nu_1}(T = 0) = \int_{0}^{\infty} dT P(v_{R_2} \rightarrow v_{R_1}) (\gamma_{R_2}^0)$$ (14)

H is the Hubble expansion rate and s is the entropy density [2]. The result from the yield can be rescaled by defining \tilde{Y}_{ν_1} to be:

$$\tilde{Y}_{\nu_1} = \frac{Y_{\nu_1}}{P(v_{R_2} \rightarrow v_{R_1})(y_{\nu_{R_1}}^2 \delta^2 \frac{M_2}{2\delta})}$$ (15)

Figure 1 shows the relic abundance of sterile neutrinos vs. M_2 for varying values of M_1 where from blue to violet the M_1 values are 10 keV, 100 keV, 1 MeV, 10 MeV, and 100 MeV. The dashed line represents the relic abundance of dark matter.

The rescaled parameter is then plugged into the following equation:

$$\Omega_{\nu_1} h^2 \approx 0.12 \frac{\sin^2(2\theta_N)}{8.8 \times 10^{-3}} + \frac{\gamma_{\nu_{R_2}}^{\text{ID}}}{10^{-13}} \frac{M_1}{\text{keV}} \frac{\gamma_{\nu_{R_2}}^0}{10^{15}}$$ (16)

The resulting term $\Omega_{\nu_1} h^2$ is the relic abundance of sterile neutrinos [1].

References